Antimicrobial and Phytochemistry study of Liparis resupinata Ridl. from Mount Gumitir, East Java, Indonesia

Fuad Bahrul Ulum, Dwi Setyati, Moh. Ikmal Alfi Rizqoni, Mukhamad Su'udi

Abstract

Liparis resupinata Ridl. is one of the abundant epiphytic orchids in the Mount Gumitir, Jember Regency with potency for phytopharmacy study. Our study focused on the observation of the species for their antimicrobial and metabolite profiles. This study used Gram-positive and Gram-negative bacteria, i.e., S. aureus, S. typhi, and E. coli with an agar diffusion method for antibacterial activity test. The metabolite profile was generated through GC-MS. The methanolic extract of the leaves of L. resupinata showed positive antibacterial activity. The GC-MS data analysis suggested the presence of antimicrobial substances e.g., (-)-loliolide, nonanoic acid, 1,2-ethanediamine, and hydroxy dimethyl furanone.

Keywords

Antimicrobial; Liparis resupinata; GC-MS; Metabolite; Orchids

Full Text:

PDF

References

Alonso, Alan-Misael, Oscar Kevin Reyes-Maldonado, Ana María Puebla-Pérez, Martha Patricia Gallegos Arreola, Sandra Fabiola Velasco-Ramírez, Victor Zúñiga-Mayo, Rosa E. Sánchez-Fernández, Jorge-Iván Delgado-Saucedo, and Gilberto Velázquez-Juárez. (2022). GC/MS Analysis, Antioxidant Activity, and Antimicrobial Effect of Pelargonium peltatum (Geraniaceae). Molecules 27, no. 11: 3436. https://doi.org/10.3390/molecules27113436

Anand, U., Jacobo-Herrera, N., Altemimi, A., & Lakhssassi, N. (2019). A Comprehensive Review on Medicinal Plants as Antimicrobial Therapeutics: Potential Avenues of Biocompatible Drug Discovery. Metabolites 2019, Vol. 9, Page 258, 9(11), 258. https://doi.org/10.3390/METABO9110258

Arum, A.Y. 2023. Analisis DNA barcode anggrek Liparis resupinata ridl. Asal awasan gunung Gumitir menggunakan penanda molekuler matk, rbcIL, dan ITS2 [unpublished bachelor thesis]. The University of Jember

Aswandi, A. and Kholibrina, C.R., (2021). Ethnomedicinal properties of rchidaceae by local communities in Lake Toba region, North Sumatra, Indonesia. In IOP Conference Series: Earth and Environmental Science (Vol. 914, No. 1, p. 012056). IOP Publishing. https://doi.org/10.1088/1755-1315/914/1/012056

Balouiri, M., Sadiki, M., & Ibnsouda, S. K. (2016). Methods for in vitro evaluating antimicrobial activity: A review. Journal of pharmaceutical analysis, 6(2), 71-79. https://doi.org/10.1016/j.jpha.2015.11.005

Bitrus, A. A., Olabode, M. P., Abbas, M. A., & Dauda Goni, M. (2018). Staphylococcus aureus: A Review of Antimicrobial Resistance Mechanism Mechanis of antibiotic resistance View project The role of Toll-like receptor 4 on the activation of murine macrophage infected with recombinant BCG expressing MSP_1C of Plasmodium falciparum View project. https://doi.org/10.17582/journal.vsrr/2018/4.2.43.54

Cahyaningsih, R., Magos Brehm, J., & Maxted, N. (2021). Gap analysis of Indonesian priority medicinal plant species as part of their conservation planning. Global Ecology and Conservation, 26, e01459. https://doi.org/10.1016/J.GECCO.2021.E01459

Darojati, U.A., Murwanti, R. and Hertiani, T. (2022). Sterqulia quadrifida r. br: a comprehensive review of ethnobotany, phytochemistry, pharmacology and toxicology. J Pharm Sci, 1, p.2. https://dx.doi.org/10.20961/jpscr.v7i1.52244

Devadas, S. M., Nayak, U. Y., Narayan, R., Hande, M. H., & Ballal, M. (2019). 2,5-Dimethyl-4-hydroxy-3(2H)-furanone as an Anti-biofilm Agent Against Non-Candida albicans Candida Species. Mycopathologia, 184(3), 403–411. https://doi.org/10.1007/S11046-019-00341-Y/FIGURES/4

Dong, Y.F., Li, W.Y., Ye, R.C. and Wang, L., 2010. Antimicrobial and antioxidant activities of total alkaloids of Liparis nervosa (Thunb.) Lindl. Journal of Sichuan University (Natural Science Edition), 3, p.050. https://doi.org/10.3969/j.issn.0490-6756.2010.03.048

Eloff, J. N. (2019). Avoiding pitfalls in determining antimicrobial activity of plant extracts and publishing the results. BMC Complementary and Alternative Medicine, 19(1), 1–8. https://doi.org/10.1186/S12906-019-2519-3/TABLES/1

Erdelen, W., Adimihardja, K. , & Moesdarsono, H. (1999). Biodiversity, traditional medicine and the sustainable use of indigenous medicinal plants in Indonesia. Agris.Fao.Org, 7(3), 3–6. https://agris.fao.org/agris-search/search.do?recordID=NL2001004913

Farahmandfar, R., Esmaeilzadeh Kenari, R., Asnaashari, M., Shahrampour, D., & Bakhshandeh, T. (2019). Bioactive compounds, antioxidant and antimicrobial activities of Arum maculatum leaves extracts as affected by various solvents and extraction methods. Food Science & Nutrition, 7(2), 465–475. https://doi.org/10.1002/FSN3.815

Gajbhiye, M., Kapadnis, B. (2021). Lactococcus lactis subsp. Cremoris of Plant Origin Produces Antifungal Cyclo-(Leu-Pro) and Tetradecanoic Acid. Indian J Microbiol 61, 74–80. https://doi.org/10.1007/s12088-020-00917-z

Grabarczyk, M., Wińska, K., Mączka, W., Potaniec, B., & Anioł, M. (2015). Loliolide – the most ubiquitous lactone. Acta Universitatis Lodziensis. Folia Biologica et Oecologica, 11, 1–8. https://doi.org/10.1515/FOBIO-2015-0001

Hulbah, M., Croxen, M.A. and Tyrrell, G.J., (2021). Phenotypic changes in group B streptococci grown in the presence of the polyols, erythritol, sorbitol and mannitol. BMC microbiology, 21(1), p.145. https://doi.org/10.1186/s12866-021-02208-z

Kim S, Lee S, Lee H, Ha J, Lee J, Choi Y, Oh H, Hong J, Yoon Y, Choi KH. (2017). Evaluation on Antimicrobial Activity of Psoraleae semen Extract Controlling the Growth of Gram-Positive Bacteria. Korean J Food Sci Anim Resour.;37(4):502-510. https://doi.org/10.5851/kosfa.2017.37.4.502.

Lautié, E., Russo, O., Ducrot, P., & Boutin, J. A. (2020). Unraveling Plant Natural Chemical Diversity for Drug Discovery Purposes. Frontiers in Pharmacology, 11, 397. https://doi.org/10.3389/FPHAR.2020.00397/BIBTEX

Li, L., Chung, SW., Li, B. Et al. New insight into the molecular phylogeny of the genus Liparis s.l. (Orchidaceae: Malaxideae) with a new generic segregate: Blepharoglossum. Plant Syst Evol 306, 54 (2020). https://doi.org/10.1007/s00606-020-01679-3

Liang, W., Guo, X., Nagle, D.G., Zhang, W.D. and Tian, X.H., (2019). Genus Liparis: A review of its traditional uses in China, phytochemistry and pharmacology. Journal of ethnopharmacology, 234, pp.154-171. https://doi.org/10.1016/j.jep.2019.01.021

Lim, X. Y., I, B. P., & Tan, T. Y. C. (2021). Medicinal Plants in COVID-19: Potential and Limitations. Frontiers in Pharmacology, 12, 355. https://doi.org/10.3389/FPHAR.2021.611408/BIBTEX

Mukherjee, P. K., Efferth, T., Das, B., Kar, A., Ghosh, S., Singha, S., Debnath, P., Sharma, N., Bhardwaj, P. K., & Haldar, P. K. (2022). Role of medicinal plants in inhibiting SARS-CoV-2 and in the management of post-COVID-19 complications. Phytomedicine, 98. https://doi.org/10.1016/J.PHYMED.2022.153930

Musa, M. A., Khan, M. O. F., Aspedon, A., & Cooperwood, J. S. (2010). Synthesis and Antimicrobial Activity of N,N′-Bis(2-hydroxylbenzyl)-1,2-ethanediamine Derivatives. Letters in Drug Design & Discovery, 7(3), 165. https://doi.org/10.2174/157018010790596678

Nigussie, D., Davey, G., Legesse, B. A., Fekadu, A., & Makonnen, E. (2021). Antibacterial activity of methanol extracts of the leaves of three medicinal plants against selected bacteria isolated from wounds of lymphoedema patients. BMC Complementary Medicine and Therapies, 21(1), 1–10. https://doi.org/10.1186/S12906-020-03183-0/TABLES/4

Nugroho, L.H., Pratiwi, R., Susandarini, R., Wardoyo, E.R.P., Megawati, O. and Handayani, S., 2016. Isolation of bioactive compounds from two orchid species and preliminary test of their cytotoxicity against T47D breast cancer cells. International Journal of Pharmacognosy and Phytochemical Research, 8(1), pp.150-155.https://impactfactor.org/PDF/IJPPR/8/IJPPR,Vol8,Issue1,Article23.pdf/

Olivia, N. U., Goodness, U. C., & Obinna, O. M. (2021). Phytochemical profiling and GC-MS analysis of aqueous methanol fraction of Hibiscus asper leaves. Future Journal of Pharmaceutical Sciences 2021 7:1, 7(1), 1–5. https://doi.org/10.1186/S43094-021-00208-4

Putri, C.N., Rahardhian, M.R.R. and Ramonah, D. (2022). Pengaruh Metode Ekstraksi Terhadap Kadar Total Fenol dan Total Flavonoid Esktrak Etanol Daun Insulin (Smallanthus sonchifolius) serta Aktivitas Antibakteri Terhadap Staphylococcus aureus, JPSCR: Journal of Pharmaceutical Science and Clinical Research. J Pharm Sci, 1, p.16. https://doi.org/10.20961/jpscr.v7i1.43465

Puvača, N., & Frutos, R. De L. (2021). Antimicrobial Resistance in Escherichia coli Strains Isolated from Humans and Pet Animals. Antibiotics 2021, Vol. 10, Page 69, 10(1), 69. https://doi.org/10.3390/ANTIBIOTICS10010069

Rahman, S. I. A., Dyson, Z. A., Klemm, E. J., Khanam, F., Holt, K. E., Chowdhury, E. K., Dougan, G., & Qadri, F. (2020). Population structure and antimicrobial resistance patterns of Salmonella typhi isolates in urban Dhaka, Bangladesh from 2004 to 2016. PLOS Neglected Tropical Diseases, 14 (2), e0008036. https://doi.org/10.1371/JOURNAL.PNTD.0008036

Ramasamy, S. P., Rajendran, A., Pallikondaperumal, M., Sundararajan, P., Husain, F. M., Khan, A., Hakeem, M. J., Alyousef, A. A., Albalawi, T., Alam, P., Ali, H. M., & Alqasim, A. (2022). Broad-Spectrum Antimicrobial, Antioxidant, and Anticancer Studies of Leaf Extract of Simarouba glauca DC In Vitro. Antibiotics 2022, Vol. 11, Page 59, 11(1), 59. https://doi.org/10.3390/ANTIBIOTICS11010059

Ramya, R. (2022). GC-MS analysis of bioactive compounds in ethanolic leaf extract of Hellenia speciosa (J. Koenig) SR Dutta. Applied Biochemistry and Biotechnology, 194(1), 176-186. 9. https://doi.org/10.1007/s12010-021-03742-2

Sahin, N., Kula, I., & Erdogan, Y. (2006). Investigation of antimicrobial activities of nonanoic acid derivatives. PSP, 15(2), 141–143. https://www.researchgate.net/publication/287877102

Scanga, S.E., Hasanspahič, B., Zvorničanin, E., Samardžić Koženjić, J., Rahme, A.K. and Shinn-Thomas, J.H., (2018). Erythritol, at insecticidal doses, has harmful effects on two common agricultural crop plants. PloS One, 13(4), p.e0192749. https://doi.org/10.1371/journal.pone.0192749

Selvarajan, R., Obize, C., Sibanda, T., Abia, A. L. K., & Long, H. (2022). Evolution and Emergence of Antibiotic Resistance in Given Ecosystems: Possible Strategies for Addressing the Challenge of Antibiotic Resistance. Antibiotics 2023, Vol. 12, Page 28, 12(1), 28. https://doi.org/10.3390/ANTIBIOTICS12010028

Setyati, D., Lutfianasari, D., & Ratnasari, T. (2022). Kandungan alkaloid dan flavonoid tiga spesies anggrek berpotensi obat dari Kawasan Gunung Gumitir Kabupaten Jember. Jurnal Biologi Udayana, 26(1), 11–20. https://doi.org/10.24843/JBIOUNUD.2022.V26.I01.P02

Silva, J., Alves, C., Martins, A., Susano, P., Simões, M., Guedes, M., Rehfeldt, S., Pinteus, S., Gaspar, H., Rodrigues, A., Goettert, M. I., Alfonso, A., & Pedrosa, R. (2021). Loliolide, a New Therapeutic Option for Neurological Diseases? In Vitro Neuroprotective and Anti-Inflammatory Activities of a Monoterpenoid Lactone Isolated from Codium tomentosum. International Journal of Molecular Sciences, 22(4), 1–24. https://doi.org/10.3390/IJMS22041888

Swamy, M.K., Arumugam, G., Kaur, R., Ghasemzadeh, A., Yusoff, M.M. and Sinniah, U.R., (2017). GC-MS based metabolite profiling, antioxidant and antimicrobial properties of different solvent extracts of Malaysian Plectranthus amboinicus leaves. Evidence-Based Complementary and Alternative Medicine: eCAM, 2017. https://doi.org/10.1155/2017/1517683

Tetsana, N., Pedersen, H. Æ., & Sridith, K. (2014). Character intercorrelation and the potential role of phenotypic plasticity in orchids: a case study of the epiphyte Liparis resupinata. Plant systematics and Evolution, 300, 517-526. https://doi.org/10.1007/s00606-013-0900-0

Ulum, F.B., Setyati, D. and Su'udi, M., (2023). Epiphytic ferns and orchids adaptation mechanism based on stomatal structure and chlorophyll content in Urban Forest of Jember University, Indonesia. Life Science and Biotechnology, 1(1), pp.10-15. https://doi.org/10.19184/lsb.v1i1.39678

Utami, E.S.W., Hariyanto, S. and Manuhara, Y.S.W., 2017. In vitro propagation of the endangered medicinal orchid, Dendrobium lasianthera JJ Sm through mature seed culture. Asian Pacific Journal of Tropical Biomedicine, 7(5), pp.406-410. https://doi.org/10.1016/j.apjtb.2017.01.011

Vaou, Natalia, Elisavet Stavropoulou, Chrysa Voidarou, Christina Tsigalou, and Eugenia Bezirtzoglou. (2021). Towards Advances in Medicinal Plant Antimicrobial Activity: A Review Study on Challenges and Future Perspectives" Microorganisms 9, no. 10: 2041. https://doi.org/10.3390/microorganisms9102041

Velu, G., Palanichamy, V., & Rajan, A. P. (2018). Phytochemical and Pharmacological Importance of Plant Secondary Metabolites in Modern Medicine. Bioorganic Phase in Natural Food: An Overview, 135–156. https://doi.org/10.1007/978-3-319-74210-6_8

Wang, J., Huang, N., Xiong, J., Wei, H., Jiang, S., & Peng, J. (2018). Caprylic acid and nonanoic acid upregulate endogenous host defense peptides to enhance intestinal epithelial immunological barrier function via histone deacetylase inhibition. International Immunopharmacology, 65, 303–311. https://doi.org/10.1016/J.INTIMP.2018.10.022

Zhao, J., Xu, Z., Gao, P. and Liu, X., (2023). Chemical Composition, In Vitro Antioxidant Activities, and Inhibitory Effects of the Acetylcholinesterase of Liparis nervosa (Thunb.) Lindl. Essential Oil. Biomolecules, 13(7), p.1089. https://doi.org/10.3390/biom13071089

Refbacks

  • There are currently no refbacks.