Skrining Fitokimia dan Uji Aktivitas Antibakteri Ekstrak dan Fraksi Tanaman Senggugu (Rotheca serrata (L.) Steane & Mabb.) terhadap Pseudomonas aeruginosa

Ifan Arif Maulana, Bawon Triatmoko, Ari Satia Nugraha

Abstract

Irasionalitas terapi antibiotik yang tidak terkontrol dilaporkan menyebabkan bakteri resisten antibiotik, sehingga memicu penemuan agen antibakteri baru. Eksplorasi keanekaragaman tanaman obat Indonesia masih menjanjikan sebagai agen antibakteri yang potensial, termasuk tanaman senggugu (Rotheca serrata (L.) Steane & Mabb.). Penelitian ini bertujuan mengetahui aktivitas antibakteri dan kandungan fitokimia dari ekstrak dan fraksi senggugu terhadap bakteri Pseudomonas aeruginosa ATCC 27853. Ekstraksi dilakukan dengan menggunakan metanol. Fraksinasi bertingkat dilakukan untuk mendapatkan fraksi n-heksana, diklorometana, etil asetat, dan residu. Skrining fitokimia dilakukan untuk menentukan alkaloid, terpenoid/steroid, flavonoid, dan polifenol menggunakan metode KLT. Uji aktivitas antibakteri dilakukan menggunakan metode mikrodilusi untuk menentukan nilai IC50. Ekstrak mengandung terpenoid/steroid, flavonoid, polifenol. Fraksi n-heksana dan diklorometana mengandung terpenoid/steroid. Fraksi etil asetat dan residu mengandung flavonoid dan polifenol. Nilai IC50 terendah dicapai oleh fraksi n-heksana sebesar 176,919 ± 6,303 µg/mL. Ekstrak dan fraksi senggugu memiliki aktivitas antibakteri yang moderat.

Keywords

Senggugu; Antibakteri; Skrining fitokimia; Pseudomonas aeruginosa

Full Text:

PDF

References

Ardani, M., Pratiwi, S. U. T., & Hertiani, T. (2010). Efek campuran minyak atsiri daun cengkeh dan kulit batang kayu manis sebagai antiplak gigi. Majalah Farmasi Indonesia, 21(3), 191–201.

Azizah, R., & Antarti, A. N. (2019). Uji aktivitas antibakteri ekstrak dan getah pelepah serta bonggol pisang kepok kuning (Musa paradisiaca Linn.) terhadap bakteri Pseudomonas aeruginosa dan Klebsiella pneumoniae dengan metode difusi agar. JPSCR : Journal of Pharmaceutical Science and Clinical Research, 4(1), 29.

CLSI. (2015). M07-A10 Methods for Dilution Antimicrobial Susceptibility Tests for Bacteria That Grow Aerobically; Approved Standard-Tenth Edition.

Compean, K. L., & Ynalvez, R. A. (2014). Antimicrobial activity of plant secondary metabolites: A review. Research Journal of Medicinal Plant, 8(5), 204–213.

Cos, P., A. J. Vlietinck, D. Vanden Berghe, dan L. Maes. (2006). Anti-infective potential of natural products: How to develop a stronger in vitro “proof of concept”. Journal of Ethnopharmacology. 106(3):290–302.

Felhi, S., Daoud, A., Hajlaoui, H., Mnafgui, K., Gharsallah, N., & Kadri, A. (2017). Solvent extraction effects on phytochemical constituents profiles, antioxidant and antimicrobial activities and functional group analysis of Ecballium elaterium seeds and peels fruits. Food Science and Technology, 37(3), 483–492.

Fontanay, S., Grare, M., Mayer, J., Finance, C., & Duval, R. E. (2008). Ursolic, oleanolic and betulinic acids: Antibacterial spectra and selectivity indexes. Journal of Ethnopharmacology, 120(2), 272–276.

Iloki-Assanga, S. B., Lewis-Luján, L. M., Lara-Espinoza, C. L., Gil-Salido, A. A., Fernandez-Angulo, D., Rubio-Pino, J. L., & Haines, D. D. (2015). Solvent effects on phytochemical constituent profiles and antioxidant activities, using four different extraction formulations for analysis of Bucida buceras L. and Phoradendron californicum. Biomed Central Research Notes, 8(1), 1–14.

Indriani, N. (2007). Aktivitas Antibakteri Daun Senggugu (Clerodendron serratum [L.] Spr.). Bogor Agricultural University.

Januarti, I. B., Wijayanti, R., Wahyuningsih, S., & Nisa, Z. (2019). Potensi ekstrak terpurifikasi daun sirih merah (Piper crocatum Ruiz & Pav) sebagai antioksidan dan antibakteri. JPSCR : Journal of Pharmaceutical Science and Clinical Research, 4(2), 60.

Karou, D., M. H. Dicko, J. Simpore, dan A. S. Traore. 2005. Antioxidant and antibacterial activities of polyphenols from ethnomedicinal plants of Burkina faso. African Journal of Biotechnology. 4(8):823–828.

Kumar, P. (2013). Phytochemical and pharmacological profiles of Clerodendrum serratum Linn. (bharngi): A review. International Journal of Research in Ayurveda and Pharmacy, 4(2), 276–278.

Mohamed, A. J., Mohamed, E. A. H., Aisha, A. F., Ameer, O. Z., Ismail, Z., Ismail, N., Yam, M. F. (2012). Antioxidant, antiangiogenic and vasorelaxant activities of methanolic extract of Clerodendrum serratum (Spreng.) leaves. Journal of Medicinal Plants Research, 6(3), 348–360.

Mujeeb, F., P. Bajpai, dan N. Pathak. 2014. Phytochemical evaluation, antimicrobial activity, and determination of bioactive components from leaves of Aegle marmelos. Biomed Research International. 1–11.

Nasrudin, Wahyono, Mustofa, & Asmah, R. (2017). Hepatoprotective activity of ethyl acetate fraction of Senggugu’s root bark (Clerodendrum serratum L. Moon ) on rats induced by carbon tetrachloride. Indonesian Journal of Pharmacy, 28(1), 10–18.

Nugraha, A. S., Pratoko, D. K., Damayanti, Y. D., Lestari, N. D., Laksono, T. A., Addy, H. S., Untari, L. F., Kusumawardani, B., & Wangchuk, P. (2019). Antibacterial and anticancer activities of nine lichens of Indonesian Java island. Journal of Biologically Active Products from Nature, 9(1), 39–46.

Nugraha, A. S. (2015). Natural product studies on tropical and polar plants. PhD Thesis, University of Wollongong, Australia.

Parathon, H., Kuntaman, K., Widiastoety, T. H., Muliawan, B. T., Karuniawati, A., Qibtiyah, M., Vong, S. (2017). Progress towards antimicrobial resistance containment and control in Indonesia. British Medical Journal, 358, 3808.

Patel, J. J., Sanjeev, R. A., & Acharya, N. S. (2014). Clerodendrum serratum (L.) Moon. – A review on traditional uses, phytochemistry, and pharmacological activities. Journal of Ethnopharmacology, 154(2), 268–285.

Rukmono, P., & Zuraida, R. (2013). Uji kepekaan antibiotik terhadap pseudomonas aeruginosa penyebab sepsis neonatorum. Sari Pediatri, 14(5), 332–336.

Sarmah, A. K., Meyer, M. T., & Boxall, A. B. A. (2006). A global perspective on the use, sales, exposure pathways, occurrence, fate and effects of veterinary antibiotics (VAs) in the environment. Chemosphere, 65(5), 725–759.

Sultana, N., & Afolayan, A. J. (2007). A novel daucosterol derivative and antibacterial activity of compounds from Arctotis arctotoides. Natural Product Research, 21(10), 889–896.

Thavamoney, N., Sivanadian, L., Tee, L. H., Khoo, H. E., Prasad, K. N., & Kong, K. W. (2018). Extraction and recovery of phytochemical components and antioxidative properties in fruit parts of Dacryodes rostrata influenced by different solvents. Journal of Food Science and Technology, 55(7), 2523–2532.

The Commision of The European Communities. 2005. Requirements for the Determination of Levels of Dioxins and Dioxin-Like PCBs in Feedingstuffs Rules. Commision Regulation: Subsidiary Legislation 473.54.

WHO. 2016. The Top 10 Causes of Death. Retrieved from https://www.who.int/news-room/fact-sheets/detail/the-top-10-causes-of-death.

Widyawati, P. S., Dwi, T., Budianta, W., & Kusuma, F. A. (2014). Difference of solvent polarity to phytochemical content and antioxidant activity of Pluchea indicia less leaves extracts. International Journal of Pharmacognosy and Phytochemical Research, 6(4), 850–855.

Wolska, K. I., Grudniak, A. M., Fiecek, B., Kraczkiewicz-Dowjat, A., & Kurek, A. (2010). Antibacterial activity of oleanolic and ursolic acids and their derivatives. Central European Journal of Biology, 5(5), 543–553.

Yanling, J., Xin, L., & Zhiyu, L. (2013). The Antibacterial Drug Discovery. In Drug Discovery.

Yezli, S., & Li, H. (2012). Antibiotic resistance amongst healthcare-associated pathogens in China. International Journal of Antimicrobial Agents, 40(5), 389–397.

Refbacks

  • There are currently no refbacks.