Comparison of aftershock behavior of the flores sea 12 december 1992 and 14 december 2021

Adi Jufriansah, Azmi Khusnani, Yudhiakto Pramudya, Mulya Afriyanto


Over 30 years, the Flores region experienced earthquakes with Mw >7 twice, namely in 1992 and 2021 at shallow depths <60 km. However, the behavior of the aftershocks accompanying the quake has yet to be studied in detail. This research aims to compare the behavior of aftershocks after the main earthquake. This research uses three-lifetime analysis functions, namely, Wilber3, Mustang Web Browser, and comparison of Probability Density Function Hazard. The data used comes from IRIS data and BMKG Online Data. Through graphical analysis, it is known that the data for the time difference for aftershocks follow the RMS distribution, indicating that the Flores Sea aftershock on 12 December 1992 occurred with high intensity on the 3rd and the 6th day after the main earthquake. Meanwhile, the aftershocks in the Flores Sea on 14 December 2021 tended to occur with a more even intensity during the observation period, but the power returned to high on the 7th day


Aftershock; Wilber3; Mustang Web Browser; Probability Density Function Hazard; Flores Sea

Full Text:



Aslamia, H., & Supardi, Z. A. I. (2022). Analisis Parameter a-Value Dan b-Value sebagai Mitigasi Bencana Gempa Bumi di Nusa Tenggara Timur. Jambura Physics Journal, 4(1), 14-27.

Becker, J. S., Potter, S. H., McBride, S. K., Wein, A., Doyle, E. E. H., & Paton, D. (2019). When the earth doesn’t stop shaking: How experiences over time influenced information needs, communication, and interpretation of aftershock information during the Canterbury Earthquake Sequence, New Zealand. International journal of disaster risk reduction, 34, 397-411.

DeVries, P. M., Viégas, F., Wattenberg, M., & Meade, B. J. (2018). Deep learning of aftershock patterns following large earthquakes. Nature, 560(7720), 632-634.

Felix, R. P., Hubbard, J. A., Bradley, K. E., Lythgoe, K. H., Li, L., & Switzer, A. D. (2022). Tsunami hazard in Lombok and Bali, Indonesia, due to the Flores back- arc thrust. Natural Hazards and Earth System Sciences, 22(5), 1665-1682.

Felix, R. P., Hubbard, J. A., Bradley, K., Lythgoe, K., Li, L., & Switzer, A. (2021). Tsunami hazard in Lombok & Bali, Indonesia, due to the Flores backarc thrust. Nat. Hazards Earth Syst. Sci. Discuss, 343, 1-26.

Frohlich, C. (1987). Aftershocks and temporal clustering of deep earthquakes. Journal of Geophysical Research: Solid Earth, 92(B13), 13944-13956.

Hakim, A. R., Saputro, A. H., Rohadi, S., Gunawan, M. T., & Kardoso, R. (2022, July). Seismic Noise Analysis in InaTEWS Earthquake Station Network (Case Study: Flores Earthquake 7.4, 14 December 2021). In IOP Conference Series: Earth and Environmental Science (Vol. 1047, No. 1, p. 012019). IOP Publishing.

Hall, R. (2002). Cenozoic geological and plate tectonic evolution of SE Asia and the SW Pacific: computer-based reconstructions, model and animations. Journal of Asian earth sciences, 20(4), 353-431.

Harris, R., Vorkink, M. W., Prasetyadi, C., Zobell, E., Roosmawati, N., & Apthorpe, M. (2009). Transition from subduction to arc-continent collision: Geologic and neotectonic evolution of Savu Island, Indonesia. Geosphere, 5(3), 152-171.

Huang, C. Y., Yuan, P. B., Lin, C. W., Wang, T. K., & Chang, C. P. (2000). Geodynamic processes of Taiwan arc–continent collision and comparison with analogs in Timor, Papua New Guinea, Urals and Corsica. Tectonophysics, 325(1-2), 1-21.

Jufriansah, A., Pramudya, Y., Khusnani, A., & Saputra, S. (2021). Analysis of Earthquake Activity in Indonesia by Clustering Method. J. Phys. Theor. Appl, 5(2), 92-103.

Julius, A. M., & Daryono, D. (2021). Overview of 1990s deadly tsunamis in Indonesia. In E3S Web of Conferences (Vol. 331, p. 07001). EDP Sciences.

Kagan, Y. Y., & Knopoff, L. (1980). Dependence of seismicity on depth. Bulletin of the Seismological Society of America, 70(5), 1811-1822.

Keep, M., & Haig, D. W. (2010). Deformation and exhumation in Timor: Distinct stages of a young orogeny. Tectonophysics, 483(1-2), 93-111.

L. Handayani, "Seismic Hazard Analysis of Maumere, Flores: a Review of The Earthquake Sources," Proceedings of the 7th Mathematics, Science, and Computer Science Education International Seminar, MSCEIS 2019, 12 October 2019, Bandung, West Java, Indonesia, 2020.

Liu, M., Li, H., Zhang, M., Wang, W., Yang, Y., Li, L., ... & Zhang, H. (2022). Investigation of the 2013 Eryuan, Yunnan, China MS 5.5 Earthquake Sequence: Aftershock Migration, Seismogenic Structure and Hazard Implication. Tectonophysics, 837, 229445.

Maimuna, A. K., Miftakhunnisa, A. F., & Segoro, Y. A. (2022). Pemodelan Inversi 3 Dimensi untuk Identifikasi Dugaan Keberadaan Sesar menggunakan Data Anomali Gaya Berat di Laut Flores (Studi Kasus Gempa Flores 14 Desember 2021). PROGRESS: Jurnal Geofisika, 1(1), 55-62.

Miller, M., & Zhang, P. (2021). Seismic Imaging of the Subducted Australian Continental Margin Beneath Timor and the Banda Arc Collision Zone.

Minoura, K., Imamura, F., Takahashi, T., & Shuto, N. (1997). Sequence of sedimentation processes caused by the 1992 Flores tsunami: evidence from Babi Island. Geology, 25(6), 523-526.

Myers, S. C., Wallace, T. C., Beck, S. L., Silver, P. G., Zandt, G., Vandecar, J., & Minaya, E. (1995). Implications of spatial and temporal development of the aftershock sequence for the Mw 8.3 June 9, 1994 deep Bolivian earthquake. Geophysical research letters, 22(16), 2269-2272.

Page, R. (1968). Focal depths of aftershocks. Journal of Geophysical Research, 73(12), 3897-3903.

Polet, J., & Kanamori, H. (2022). Tsunami earthquakes. Complexity in Tsunamis, Volcanoes, and their Hazards, 3-23.

Pranantyo, I. R., Heidarzadeh, M., & Cummins, P. R. (2021). Complex tsunami hazards in eastern Indonesia from seismic and non-seismic sources: Deterministic modelling based on historical and modern data. Geoscience Letters, 8(1), 1-16.

Rahman, Z., Rehman, K., Ali, W., Ali, A., Burton, P., Barkat, A., ... & Qadri, S. M. (2021). Re-appraisal of earthquake catalog in the Pamir―Hindu Kush region, emphasizing the early and modern instrumental earthquake events. Journal of Seismology, 25(6), 1461-1481.

Rini, L. S., Pratiwi, H., & Wiyono, S. B. (2017). Penerapan Model epidemic type aftershock sequence (ETAS) pada Data Gempa Bumi di Sumatra. URECOL, 281-286.

Rohadi, S., Azhar Prakoso, T., Yatimantoro, T., Rahman, A., Sunardi, B., Adimarta, A.,... & Karnawati, D. (2022, May). The 14 December 2021, Mw 7.4 Flores Earthquake: Review of the hypocenter relocation, slip distribution, coulomb stress, and seismic hazard. In EGU General Assembly Conference Abstracts (pp. EGU22-8366).

Shen, D., Zhang, Q., Xu, T., Zhu, H., Zhao, W., Yin, Z., ... & Xiong, H. (2019). Machine learning-enhanced realistic framework for real-time seismic monitoring—The winning solution of the 2017 international aftershock detection contest. Supendi, P., Nugraha, A. D., Widiyantoro, S., Pesicek, J. D., Thurber, C. H., Abdullah, C. I., ... & Rosalia, S. (2020). Relocated aftershocks and background seismicity in eastern Indonesia shed light on the 2018 Lombok and Palu earthquake sequences. Geophysical Journal International, 221(3), 1845-1855.

Supendi, P., Rawlinson, N., Prayitno, B. S., Widiyantoro, S., Simanjuntak, A., Palgunadi, K. H., ... & Arimuko, A. (2022). The Kalaotoa Fault: A Newly Identified Fault that Generated the M w 7.3 Flores Sea Earthquake. The Seismic Record, 2(3), 176-185.

Wiens, D. A. (1998). Source and aftershock properties of the 1996 Flores Sea deep earthquake. Geophysical research letters, 25(6), 781-784.

Wu, L. R., & Chen, W. P. (1999). Anomalous aftershocks of deep earthquakes in Mariana. Geophysical research letters, 26(13), 1977-1980.

Ye, L., Lay, T., & Kanamori, H. (2021). The 25 March 2020 MW 7.5 Paramushir, northern Kuril Islands earthquake and major (MW≥ 7.0) near-trench intraplate compressional faulting. Earth and Planetary Science Letters, 556, 116728.

Zhang, L., Werner, M. J., & Goda, K. (2020). Variability of ETAS Parameters in Global Subduction Zones and Applications to Mainshock–Aftershock Hazard AssessmentVariability of ETAS Parameters in Global Subduction Zones and Applications to Mainshock–Aftershock Hazard Assessment. Bulletin of the Seismological Society of America, 110(1), 191-212.


  • There are currently no refbacks.