Identification of sea breeze front (SBF) characteristics in the dry season using doppler weather radar on the west coast area of south Sulawesi

Nelly Handayani, Hasti Amrih Rejeki

Abstract

Sea Breeze Front (SBF) is one of the important components of sea breeze circulation, which plays role in coastal area’s atmospheric dynamics. SBF causes significant changes in temperature and humidity profiles and initiates updrafts that induce convective activity. This study aims to determine the characteristics of SBF and its impact on convection activity using Doppler weather radar on the west coast area of South Sulawesi during dry season. SBF identification utilized PPI and CMAX products to detect convective clouds and SRI to estimate rainfall intensity, then verified it using Automatic Weather Station (AWS) and Automatic Rain Gauge (ARG). SBF was generally detected at 10.30–14.30 LT with an average moving speed of 2.04 m/s. The length of SBF ranges from 15.47–21.08 km and moves inland as far as 12.57–26.09 km with 0.51–0.89 km of column depth. There was a difference in the average value of solar radiation intensity up to 106 W/m2 and 0.5°C of temperature during SBF Days. SBF caused 17 events of convective activity with a maximum reflectivity value of 42–60 dBz and 4–8 km of cloud diameter. Five out of 17 convective activities indicated the occurrence of light rain on the surface.

Keywords

convective activity, Doppler weather radar, rainfall, sea breeze front

Full Text:

PDF

References

Anjos, M. and A. Lopes. (2018). Sea breeze front identification on the north eastern coast of Brazil and its implications for meteorological conditions in the Sergipe region. Theoretical and Applied Climatology, 137, 2151–2165.

BMKG. (2018). Prakiraan Musim Hujan 2018/2019 di Indonesia. Jakarta, ID: Badan Meteorologi Klimatologi dan Geofisika.

Bhaskara, N.S., S. D. Williams, M. Chandy, and U. Devi. (1984). Study of sea breeze at Madras. Mausam, 35, 537–538.

Gamache, J. F. and R. A. Houze Jr. (1982). Mesoscale Air motions Associated with a Tropical Squall Line. American Meteorology Society, 110, 118–135.

Hadi, T. W., T. Horinouchi, T. Tsuda, H. Hashiguchi, and S. Fukao. (2002). Sea–Breeze Circulation over Jakarta, Indonesia: A Climatology Based on Boundary Layer Radar Observations. Monthly Weather Review, 130, 2153–2166.

Holleman, I., D. Michelson, G. Galli, U. Germann and M. Peura. (2006). Quality Information for Radars and Radar Data. EU: OPERA Workpackage, Europe.

Meilusiani, T. C. (2018). Identifikasi Karakteristik Sea Breeze Front dan Pengaruhnya Terhadap Aktivitas Konvektif di Makassar Tahun 2017 Menggunakan Radar Cuaca Doppler. Jakarta, ID: Sekolah Tinggi Meteorologi Klimatologi dan Geofisika.

Miller, S. T. K., B. D. Keim, R. W. Talbot, and H. Mao. (2003). Sea Breeze: Structure, Forecasting, and Impacts. Reviews of Geophysics, 41(3), 1–30.

Novitasari, A. S. (2017). Karakteristik Sea Breeze Front dan Kaitannya Terhadap Aktivitas Konvektif di Pantai Utara Jakarta. Jakarta, ID: Sekolah Tinggi Meteorologi Klimatologi dan Geofisika.

Planchon, O., F. Damato, V. Dubreuil, and P. Gouery. (2006). A Method of Identifying and Locating Sea–Breeze Fronts in North–Eastern Brazil by Remote Sensing. Meteorology Appl., 13, 225–234.

SELEX. (2013) Software Manual Rainbow 5 Product & Algorithms. Neuss, DE: SELEX SIGmbH.

Simpson, J. E. (1994) Sea Breeze and Local Wind. Cambridge, GB: Department of Applied Mathematics and Theoretical Physics University of Cambridge.

Simpson, M., H. Warrior, S. Raman, P. A. Aswathanarayana, U. C. Mohanty, and R. Suresh. (2007). Sea–Breeze–Initiated Rainfall Over The East Coast of India During The Indian Southwest Monsoon. Journal of the International Society for the Prevention and Mitigation of Natural Hazards, 42(2), 401–413.

Sturges, H.A. (1926). The Choice of a Class Interval. Journal of the American Statistical Association, 21(153), 65–66.

Suresh, R. (2007). Observation of sea Breeze Front and Its Induced Convection Over Chennai in Southern Pennisular India Using Doppler Weather Radar. Pure and Applied Geophysics, 164, 1511–1525.

Tjasyono, B. (2008). Sains Atmosfer. Jakarta, ID: Badan Meteorologi Klimatologi dan Geofisika.

Tjasyono, B. and S. W. Harijono. (2013). Atmosfer Ekuatorial. Jakarta, ID: Badan Meteorologi Klimatologi dan Geofisika.

Tsanyfadhila, S. (2015). Kajian Produk Radar untuk Estimasi Curah Hujan di Makassar dan Sekitarnya. Jakarta, ID: Sekolah Tinggi Meteorologi Klimatologi dan Geofisika.

Yamanaka, M.D., S. Ogino, P. Wu, H. J. Ichi, S. Mori, J. Matsumoto, and F. Syamsudin. (2018). Maritime Continent Coastlines Controlling Earth’s Climate, Progress in Earth and Planetary Science, 5(1).

Yan, W., Y. Lili, and Z. Nannan. (2012). Sea Breeze Front and Convective Weather Events Detected by Doppler Weather Radar. International Congress on Informatics, Environment, Energy and Applications.

Wexler, R. (1946). Theory and Observations of Land and Sea Breezes. Bulletin American Meteorological Society, 27, 272–287.

Refbacks

  • There are currently no refbacks.