Understanding of the Experimental Concept of Radiation Absorption of Radioactive Materials

Soni Prayogi, Fitria Silviana, Zainuddin Zainuddin

Abstract

In this article, we discuss the experimental absorption of radioactive light radiation on various materials using Geiger Muller. Under certain conditions, Geiger Muller can be used to determine the absorption coefficient of a material. The radioactive rays observed in this experiment are gamma rays. Gamma rays are radioactive rays that have no charge so they cannot be deflected by magnetic or electric fields and have the greatest penetrating power. We made several important results on experimental studies of the absorption of gamma radiation passing through matter. Our results relate to the trend of the unexpected, measured intensity of radiation versus the thickness of the absorber, which confuses students and cannot be explained by many laboratory assistants. Finally, we believe that a distribution function is an effective tool for examining the contribution of the build-up factor in the Geiger Muller calculation of the measured radiation intensity.

Keywords

Geiger Muller; Gamma rays; Build-up; Statistics Poisson

Full Text:

PDF

References

Artiani, P.A., Ratiko, R., Purwanto, Y., & Heriyanto, K., (2019). Pengaruh Perisai Radiasi Pada Penyimpanan Kering Bahan Bakar Nuklir Bekas untuk Reaktor Daya Eksperimental. Jurnal Pengembangan Energi Nuklir 20, 83–93. https://doi.org/10.17146/jpen.2018.20.2.5025

Bahrum, E.S., Handiaga, W., Setiadi, Y., Wibowo, H., Basuki, P., Maulana, A., Febrian, M.B., & Pane, J.S., (2020). DESIGN OF IRRADIATION FACILITIES AT CENTRAL IRRADIATION POSITION OF PLATE TYPE RESEARCH REACTOR BANDUNG. JURNAL TEKNOLOGI REAKTOR NUKLIR TRI DASA MEGA 22, 1–8. https://doi.org/10.17146/tdm.2020.22.1.5762

Bhowmik, S., (2011). Effect of Radiation and Vacuum, in: da Silva, L.F.M., Öchsner, A., Adams, R.D. (Eds.), Handbook of Adhesion Technology. Springer, Berlin, Heidelberg, pp. 823–844. https://doi.org/10.1007/978-3-642-01169-6_32

Costa, E., & Muleri, F., (2014). Gamma and X-Radiation, in: Njoku, E.G. (Ed.), Encyclopedia of Remote Sensing, Encyclopedia of Earth Sciences Series. Springer, New York, NY, pp. 219–228. https://doi.org/10.1007/978-0-387-36699-9_49

El-Amin, A.A., & Saad, M.H., (2017). Ionizing Radiations (Alpha, Beta, Gamma) Effects on CdS / P-Si Heterojunction Solar Cell for Electrical and Optical Properties. Journal of Materials Science Research 7, p20. https://doi.org/10.5539/jmsr.v7n1p20

Goiffon, V., Magnan, P., Saint-Pé, O., Bernard, F., & Rolland, G., (2009). Ionization versus displacement damage effects in proton irradiated CMOS sensors manufactured in deep submicron process. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, New Developments In Photodetection NDIP08 610, 225–229. https://doi.org/10.1016/j.nima.2009.05.078

Halim, M.A., (2012). Harnessing Sun’s Energy with Quantum Dots Based Next Generation Solar Cell. Nanomaterials (Basel) 3, 22–47. https://doi.org/10.3390/nano3010022

Hamdani, D., Prayogi, S., Cahyono, Y., Yudoyono, G., & Darminto, D., 2022. The influences of the front work function and intrinsic bilayer (i1, i2) on p-i-n based amorphous silicon solar cell’s performances: A numerical study. Cogent Engineering 9, 2110726. https://doi.org/10.1080/23311916.2022.2110726

Kandlakunta, P., Van Zile, M., & Cao, L.R., (2022). Silicon Solar Cells for Post-Detonation Monitoring and Gamma-Radiation Effects. Nuclear Science and Engineering 196, 1383–1396. https://doi.org/10.1080/00295639.2022.2091905

Nicholls, D.C., Dopita, M.A., Sutherland, R.S., & Kewley, L.J., (2017). Chapter 17 - Electron Kappa Distributions in Astrophysical Nebulae, in: Livadiotis, G. (Ed.), Kappa Distributions. Elsevier, pp. 633–655. https://doi.org/10.1016/B978-0-12-804638-8.00017-6

Prayogi, S., Asih, R., Priyanto, B., Baqiya, M.A., Naradipa, M.A., Cahyono, Y., & Darminto, Rusydi, A., (2022). Observation of resonant exciton and correlated plasmon yielding correlated plexciton in amorphous silicon with various hydrogen content. Sci Rep 12, 21497. https://doi.org/10.1038/s41598-022-24713-5

Prayogi, S., Cahyono, Y., & Darminto, D., (2022). Electronic structure analysis of a-Si: H p-i1-i2-n solar cells using ellipsometry spectroscopy. Opt Quant Electron 54, 732. https://doi.org/10.1007/s11082-022-04044-5

Prayogi, S., Cahyono, Y., Iqballudin, I., Stchakovsky, M., & Darminto, D., (2021). The effect of adding an active layer to the structure of a-Si: H solar cells on the efficiency using RF-PECVD. J Mater Sci: Mater Electron 32, 7609–7618. https://doi.org/10.1007/s10854-021-05477-6

Susila, I.P., Alfiansyah, A., Istofa, I., Sukandar, S., Santoso, B., & Suratman, S., (2019). DEVELOPMENT OF MOBILE DEVICE FOR GAMMA RADIATION MEASUREMENT UTILIZING LORA AS THE COMMUNICATION MEANS. JURNAL TEKNOLOGI REAKTOR NUKLIR TRI DASA MEGA 21, 79–86. https://doi.org/10.17146/tdm.2019.21.2.5432

Zainuddin, Z., Syukri, M., Prayogi, S., & Luthfia, S., (2022). Implementation of Engineering Everywhere in Physics LKPD Based on STEM Approach to Improve Science Process Skills. Jurnal Pendidikan Sains Indonesia (Indonesian Journal of Science Education) 10, 231–239. https://doi.org/10.24815/jpsi.v10i2.23130

Refbacks

  • There are currently no refbacks.