Fabrication of p-type (MCCO) thin film using DC magnetron sputtering as a preparator for thermoelectric module
Abstract
Keywords
Full Text:
PDFReferences
Alam, H. (2013). A review on the enhancement of figure of merit from bulk to nano-thermoelectric materials. Nano Energy, 2, 190–212. https://doi.org/10.1016/j.nanoen.2012.10.005
Asahi, R., Sugiyama, J., Tani, T., & Xia, C. (2002). Electronic structure of misfit-layered calcium cobaltite. Twenty-First International Conference on Thermoelectrics, 2002. Proceedings ICT ’02., 203–206. https://doi.org/10.1109/ICT.2002.1190300
Cahyaningsih, E. W. (2020). Reduction the Electrical Resistivity of ZnO Thermoelectric Thin-Films by Ag, WO3 and Al2O3 Doping. Journal of Materials Science and Applied Energy, 9(1), Art. 1.
Constantinescu, G., Rasekh, S., Torres, M. A., Bosque, P., Madre, M. A., Sotelo, A., & Diez, J. C. (2015). Thermoelectric doping effect in Ca3Co4-xNixO9 ceramics. Boletín de La Sociedad Española de Cerámica y Vidrio, 54(1), 21–27. https://doi.org/10.1016/j.bsecv.2015.02.004
Fu, Y., Zhao, B., Huang, Y., Yang, J., Dai, J., Zhou, M., & Sun, Y. (2011). Spin-glass and spin-fluctuation in Mo-doped Ca3Co4O9 system. Solid State Communications, 151(13), 933–937. https://doi.org/10.1016/j.ssc.2011.04.009
Huang, Y., Zhao, bc, Lin, S., Ang, R., Song, W., & Sun, Y. (2014). Strengthening of Thermoelectric Performance via Ir Doping in Layered Ca3Co4O9 System. Journal of the American Ceramic Society, 97. https://doi.org/10.1111/jace.12676
Huang, Y., Zhao, bc, Lin, S., Ang, R., & Sun, Y. (2014). Structure and Transport Properties in Ca3Co4−xMxO9 (M=Re and Pt) Ceramics. Ceramics International, 40, 10545–10550. https://doi.org/10.1016/j.ceramint.2014.03.030
Huang, Y., Zhao, B., Hu, X., Lin, S., Ang, R., Song, W., & Sun, Y. (2012). Enhanced electronic correlation and thermoelectric response by Cu-doping in Ca3Co4O9 single crystals. Dalton Transactions, 41(36), 11176–11186. https://doi.org/10.1039/C2DT31346D
Jo, J., Oh, I., Jin, M.-J., Park, J., Son, J. S., An, K.-S., & Yoo, J.-W. (2017). Highly stretchable organic thermoelectrics with an enhanced power factor due to extended localization length. Organic Electronics, 50, 367–375. https://doi.org/10.1016/j.orgel.2017.08.013
Kaur, K., Khan, E., Khandy, S., Singh, J., & Dhiman, S. (2021). Traditional thermoelectric materials and challenges (pp. 139–161). https://doi.org/10.1016/B978-0-12-819984-8.00009-6
Lee, J., Park, S., Kim, B., Oh, M., Cho, S.-H., Min, B.-K., Lee, H. W., & Kim, myong-ho. (2010). Control of Thermoelectric Properties through the addition of Ag in the Bi0.5Sb1.5Te3Alloy. Electronic Materials Letters, 6, 201–207. https://doi.org/10.3365/eml.2010.12.201
Li, D., Qin, X. Y., Gu, Y. J., & Zhang, J. (2005a). The effect of Mn substitution on thermoelectric properties of Ca3MnxCo4-xO9 at low temperatures. Solid State Communications, 4. https://doi.org/10.1016/j.ssc.2005.01.044
Li, D., Qin, X. Y., Gu, Y. J., & Zhang, J. (2005b). The effect of Mn substitution on thermoelectric properties of Ca3MnxCo4−xO9 at low temperatures. Solid State Communications, 134(4), 235–238. https://doi.org/10.1016/j.ssc.2005.01.044
Li, S., Funahashi, R., Matsubara, I., Ueno, K., & Yamada, H. (1999). High temperature thermoelectric properties of oxide Ca9Co12O28. Journal of Materials Chemistry, 9(8), 1659–1660. https://doi.org/10.1039/A904413B
Masset, A. C., Michel, C., Maignan, A., Hervieu, M., Toulemonde, O., Studer, F., Raveau, B., & Hejtmanek, J. (2000). Misfit-layered cobaltite with an anisotropic giant magnetoresistance: ${mathrm{Ca}}_{3}{mathrm{Co}}_{4}{mathrm{O}}_{9}$. Physical Review B, 62(1), 166–175. https://doi.org/10.1103/PhysRevB.62.166
Mikami, M., Ando, N., & Funahashi, R. (2005). The effect of Ag addition on electrical properties of the thermoelectric compound Ca3Co4O9. Journal of Solid State Chemistry, 178(7), 2186–2190. https://doi.org/10.1016/j.jssc.2005.04.027
Miyazaki, Y. M. Y., Kudo, K. K. K., Akoshima, M. A. M., Ono, Y. O. Y., Koike, Y. K. Y., & Kajitani, T. K. T. (2000). Low-Temperature Thermoelectric Properties of the Composite Crystal [Ca 2CoO 3.34] 0.614[CoO 2]. Japanese Journal of Applied Physics, 39(6A), L531. https://doi.org/10.1143/JJAP.39.L531
Moualhi, Y., M’nassri, R., Rahmouni, H., Gassoumi, M., & Khirouni, K. (2020). Possibility of controlling the conduction mechanism by choosing a specific doping element in a praseodymium manganite system. RSC Advances, 10(56), 33868–33878. https://doi.org/10.1039/D0RA03982A
Pei, K. (2022). Recent Advances in Molecular Doping of Organic Semiconductors. Surfaces and Interfaces, 30, 101887. https://doi.org/10.1016/j.surfin.2022.101887
Pinitsoontorn, S., Lerssongkram, N., Harnwunggmoung, A., Kurosaki, K., & Yamanaka, S. (2010). Synthesis, mechanical and magnetic properties of transition metals-doped Ca3Co3.8M0.2O9. Journal of Alloys and Compounds - J ALLOYS COMPOUNDS, 503, 431–435. https://doi.org/10.1016/j.jallcom.2010.05.027
Rebola, A., Klie, R., Zapol, P., & Öğüt, S. (2012). First-principles study of the atomic and electronic structures of misfit-layered calcium cobaltite (Ca_ {2} CoO_ {3})(CoO_ {2}) _ {1.62} using rational approximants. Phys. Rev. B, 85. https://doi.org/10.1103/PhysRevB.85.155132
Shikano, M., & Funahashi, R. (2003). Electrical and thermal properties of single-crystalline (Ca2CoO3)0.7CoO2 with a Ca3Co4O9 structure. Applied Physics Letters, 82(12), 1851–1853. https://doi.org/10.1063/1.1562337
Sugiura, K., Ohta, H., Nomura, K., Saito, T., Ikuhara, Y., Hirano, M., Hosono, H., & Koumoto, K. (2007). Thermoelectric Properties of the Layered Cobaltite Ca<SUB>3</SUB>Co<SUB>4</SUB>O<SUB>9</SUB> Epitaxial Films Fabricated by Topotactic Ion-Exchange Method. Materials Transactions, 48(8), 2104–2107. https://doi.org/10.2320/matertrans.E-MRA2007864
Wang, Y., Xu, L., Sui, Y., Wang, X., Cheng, J., & Su, W. (2010a). Enhanced electron correlation in rare-earth doped Ca3Co4O9. Applied Physics Letters, 97(6), 062114. https://doi.org/10.1063/1.3479923
Wang, Y., Xu, L., Sui, Y., Wang, X., Cheng, J., & Su, W. (2010b). Enhanced electron correlation in rare-earth doped Ca3Co4O9. Applied Physics Letters, 97(6), 062114. https://doi.org/10.1063/1.3479923
Xu, L., Li, F., & Wang, Y. (2010). High-temperature transport and thermoelectric properties of Ca3Co4−xTixO9. Journal of Alloys and Compounds, 1(501), 115–119. https://doi.org/10.1016/j.jallcom.2010.04.055
Yan, Y., Zhang, G., Wang, C., Peng, C., Zhang, P., Wang, Y., & Ren, W. (2016). Optimizing the Dopant and Carrier Concentration of Ca5Al2Sb6 for High Thermoelectric Efficiency. Scientific Reports, 6(1), Art. 1. https://doi.org/10.1038/srep29550
Yin, Y., Tudu, B., & Tiwari, A. (2017). Recent advances in oxide thermoelectric materials and modules. Vacuum, 146. https://doi.org/10.1016/j.vacuum.2017.04.015
Zheng, Z.-H., Li, F., Luo, J.-T., Liang, G.-X., Ma, H.-L., Zhang, X., & Fan, P. (2017). Enhancement of power factor in zinc antimonide thermoelectric thin film doped with titanium. Materials Letters, 209, 455–458. https://doi.org/10.1016/j.matlet.2017.08.063
Refbacks
- There are currently no refbacks.