Fabrication of p-type (MCCO) thin film using DC magnetron sputtering as a preparator for thermoelectric module

Elysa Nensy Irawan, Fahrur Aslami, Muhammad Matthew Janotama, Aldo Mahendra Putra, Melania Suweni Muntini, Somporn Thaowankaew, Wanatchaporn Namhongsa, Athorn Vora-Ud, Kunchit Singsoog, Tosawat Seetawan


Based on existing research, thermoelectric efficiency can be improved through material selection. In this study, the material used is CaCO₃ doped with Mn and Co₂O₃ to form CaCo3.5Mn0.5O9 material as a p-type thermoelectric material. The substrate used is glass. The stages in this research are material synthesis, sputtering process using DC Magnetron Sputtering machine to form thin films, and testing. The synthesis process includes grinding, calcination, and sintering. Grinding is done using a Ball Mill machine with a rotation speed of 250 rpm for 5 hours. Furthermore, the calcination step was carried out by heating the sample into a furnace at a temperature of 800°C for 10 hours. Then the sintering process was carried out at a temperature of 850°C for 12 hours. After the synthesis process is complete, enter the sputtering process using a DC Magnetron Sputtering machine for approximately 10 minutes. The gas used in this research is Argon (Ar). After the sputtering process was carried out, several tests appeared, such as the XRD test to determine the type of crystal, the ZEM-3 test to determine the Seebeck coefficient and resistivity, the thickness of the thin film formed, and the power factor test to determine the maximum voltage and power generated by the module formed. Several power factor test results were obtained, consisting of 107 μW/mK² at 100°C, 108 μW/mK² at 200°C, and 332 μW/mK² at 300°C and a thickness of 90.34 nm.


DC magnetron sputtering; MCCO; thermoelectric; thin film

Full Text:



Alam, H. (2013). A review on the enhancement of figure of merit from bulk to nano-thermoelectric materials. Nano Energy, 2, 190–212. https://doi.org/10.1016/j.nanoen.2012.10.005

Asahi, R., Sugiyama, J., Tani, T., & Xia, C. (2002). Electronic structure of misfit-layered calcium cobaltite. Twenty-First International Conference on Thermoelectrics, 2002. Proceedings ICT ’02., 203–206. https://doi.org/10.1109/ICT.2002.1190300

Cahyaningsih, E. W. (2020). Reduction the Electrical Resistivity of ZnO Thermoelectric Thin-Films by Ag, WO3 and Al2O3 Doping. Journal of Materials Science and Applied Energy, 9(1), Art. 1.

Constantinescu, G., Rasekh, S., Torres, M. A., Bosque, P., Madre, M. A., Sotelo, A., & Diez, J. C. (2015). Thermoelectric doping effect in Ca3Co4-xNixO9 ceramics. Boletín de La Sociedad Española de Cerámica y Vidrio, 54(1), 21–27. https://doi.org/10.1016/j.bsecv.2015.02.004

Fu, Y., Zhao, B., Huang, Y., Yang, J., Dai, J., Zhou, M., & Sun, Y. (2011). Spin-glass and spin-fluctuation in Mo-doped Ca3Co4O9 system. Solid State Communications, 151(13), 933–937. https://doi.org/10.1016/j.ssc.2011.04.009

Huang, Y., Zhao, bc, Lin, S., Ang, R., Song, W., & Sun, Y. (2014). Strengthening of Thermoelectric Performance via Ir Doping in Layered Ca3Co4O9 System. Journal of the American Ceramic Society, 97. https://doi.org/10.1111/jace.12676

Huang, Y., Zhao, bc, Lin, S., Ang, R., & Sun, Y. (2014). Structure and Transport Properties in Ca3Co4−xMxO9 (M=Re and Pt) Ceramics. Ceramics International, 40, 10545–10550. https://doi.org/10.1016/j.ceramint.2014.03.030

Huang, Y., Zhao, B., Hu, X., Lin, S., Ang, R., Song, W., & Sun, Y. (2012). Enhanced electronic correlation and thermoelectric response by Cu-doping in Ca3Co4O9 single crystals. Dalton Transactions, 41(36), 11176–11186. https://doi.org/10.1039/C2DT31346D

Jo, J., Oh, I., Jin, M.-J., Park, J., Son, J. S., An, K.-S., & Yoo, J.-W. (2017). Highly stretchable organic thermoelectrics with an enhanced power factor due to extended localization length. Organic Electronics, 50, 367–375. https://doi.org/10.1016/j.orgel.2017.08.013

Kaur, K., Khan, E., Khandy, S., Singh, J., & Dhiman, S. (2021). Traditional thermoelectric materials and challenges (pp. 139–161). https://doi.org/10.1016/B978-0-12-819984-8.00009-6

Lee, J., Park, S., Kim, B., Oh, M., Cho, S.-H., Min, B.-K., Lee, H. W., & Kim, myong-ho. (2010). Control of Thermoelectric Properties through the addition of Ag in the Bi0.5Sb1.5Te3Alloy. Electronic Materials Letters, 6, 201–207. https://doi.org/10.3365/eml.2010.12.201

Li, D., Qin, X. Y., Gu, Y. J., & Zhang, J. (2005a). The effect of Mn substitution on thermoelectric properties of Ca3MnxCo4-xO9 at low temperatures. Solid State Communications, 4. https://doi.org/10.1016/j.ssc.2005.01.044

Li, D., Qin, X. Y., Gu, Y. J., & Zhang, J. (2005b). The effect of Mn substitution on thermoelectric properties of Ca3MnxCo4−xO9 at low temperatures. Solid State Communications, 134(4), 235–238. https://doi.org/10.1016/j.ssc.2005.01.044

Li, S., Funahashi, R., Matsubara, I., Ueno, K., & Yamada, H. (1999). High temperature thermoelectric properties of oxide Ca9Co12O28. Journal of Materials Chemistry, 9(8), 1659–1660. https://doi.org/10.1039/A904413B

Masset, A. C., Michel, C., Maignan, A., Hervieu, M., Toulemonde, O., Studer, F., Raveau, B., & Hejtmanek, J. (2000). Misfit-layered cobaltite with an anisotropic giant magnetoresistance: ${mathrm{Ca}}_{3}{mathrm{Co}}_{4}{mathrm{O}}_{9}$. Physical Review B, 62(1), 166–175. https://doi.org/10.1103/PhysRevB.62.166

Mikami, M., Ando, N., & Funahashi, R. (2005). The effect of Ag addition on electrical properties of the thermoelectric compound Ca3Co4O9. Journal of Solid State Chemistry, 178(7), 2186–2190. https://doi.org/10.1016/j.jssc.2005.04.027

Miyazaki, Y. M. Y., Kudo, K. K. K., Akoshima, M. A. M., Ono, Y. O. Y., Koike, Y. K. Y., & Kajitani, T. K. T. (2000). Low-Temperature Thermoelectric Properties of the Composite Crystal [Ca 2CoO 3.34] 0.614[CoO 2]. Japanese Journal of Applied Physics, 39(6A), L531. https://doi.org/10.1143/JJAP.39.L531

Moualhi, Y., M’nassri, R., Rahmouni, H., Gassoumi, M., & Khirouni, K. (2020). Possibility of controlling the conduction mechanism by choosing a specific doping element in a praseodymium manganite system. RSC Advances, 10(56), 33868–33878. https://doi.org/10.1039/D0RA03982A

Pei, K. (2022). Recent Advances in Molecular Doping of Organic Semiconductors. Surfaces and Interfaces, 30, 101887. https://doi.org/10.1016/j.surfin.2022.101887

Pinitsoontorn, S., Lerssongkram, N., Harnwunggmoung, A., Kurosaki, K., & Yamanaka, S. (2010). Synthesis, mechanical and magnetic properties of transition metals-doped Ca3Co3.8M0.2O9. Journal of Alloys and Compounds - J ALLOYS COMPOUNDS, 503, 431–435. https://doi.org/10.1016/j.jallcom.2010.05.027

Rebola, A., Klie, R., Zapol, P., & Öğüt, S. (2012). First-principles study of the atomic and electronic structures of misfit-layered calcium cobaltite (Ca_ {2} CoO_ {3})(CoO_ {2}) _ {1.62} using rational approximants. Phys. Rev. B, 85. https://doi.org/10.1103/PhysRevB.85.155132

Shikano, M., & Funahashi, R. (2003). Electrical and thermal properties of single-crystalline (Ca2CoO3)0.7CoO2 with a Ca3Co4O9 structure. Applied Physics Letters, 82(12), 1851–1853. https://doi.org/10.1063/1.1562337

Sugiura, K., Ohta, H., Nomura, K., Saito, T., Ikuhara, Y., Hirano, M., Hosono, H., & Koumoto, K. (2007). Thermoelectric Properties of the Layered Cobaltite Ca<SUB>3</SUB>Co<SUB>4</SUB>O<SUB>9</SUB> Epitaxial Films Fabricated by Topotactic Ion-Exchange Method. Materials Transactions, 48(8), 2104–2107. https://doi.org/10.2320/matertrans.E-MRA2007864

Wang, Y., Xu, L., Sui, Y., Wang, X., Cheng, J., & Su, W. (2010a). Enhanced electron correlation in rare-earth doped Ca3Co4O9. Applied Physics Letters, 97(6), 062114. https://doi.org/10.1063/1.3479923

Wang, Y., Xu, L., Sui, Y., Wang, X., Cheng, J., & Su, W. (2010b). Enhanced electron correlation in rare-earth doped Ca3Co4O9. Applied Physics Letters, 97(6), 062114. https://doi.org/10.1063/1.3479923

Xu, L., Li, F., & Wang, Y. (2010). High-temperature transport and thermoelectric properties of Ca3Co4−xTixO9. Journal of Alloys and Compounds, 1(501), 115–119. https://doi.org/10.1016/j.jallcom.2010.04.055

Yan, Y., Zhang, G., Wang, C., Peng, C., Zhang, P., Wang, Y., & Ren, W. (2016). Optimizing the Dopant and Carrier Concentration of Ca5Al2Sb6 for High Thermoelectric Efficiency. Scientific Reports, 6(1), Art. 1. https://doi.org/10.1038/srep29550

Yin, Y., Tudu, B., & Tiwari, A. (2017). Recent advances in oxide thermoelectric materials and modules. Vacuum, 146. https://doi.org/10.1016/j.vacuum.2017.04.015

Zheng, Z.-H., Li, F., Luo, J.-T., Liang, G.-X., Ma, H.-L., Zhang, X., & Fan, P. (2017). Enhancement of power factor in zinc antimonide thermoelectric thin film doped with titanium. Materials Letters, 209, 455–458. https://doi.org/10.1016/j.matlet.2017.08.063


  • There are currently no refbacks.