Improvements to conventional methods for determining lung cancer areas from CT scan images using ImageJ - software
Abstract
Early detection of lung cancer will definitely help the patients in treating the illness precisely and as early as possible. One of the methods used to detect lung cancer is through CT scan examination. The images from CT scan will show the cancer area of lung describing the severity of lungs affected by cancer. However, the conventional method is often not accurate. Therefore, this research aims to determine the area of cancer by segmenting the lung organs affected by cancer using Image-J software. The edge detection method was employed to segment an image. The results show that by using the proposed method, the largest cancer area is obtained in the seventh slice with the area of 15.39 cm2 and the smallest cancer area is obtained in the first slice with the area of 1.52 cm2. Whereas by using the convetional method, the largest cancer area is obtained in the fourth slice with the area of 20.57 cm2 and the smallest cancer area is obtained in the teenth slice with the area of 3.52 cm2. The area of lung cancer in each CT Scan slice determined using ImageJ software is more accurate than the conventional method. For that reason, the proposed technique is potential to improve the accuracy of a medical image analysis.
Keywords
Full Text:
PDFReferences
Desviana, Safitri, R., Saumi, S. (2018). CT Scan Lung Tumors Identification Image by Varying The Value of Strong and Weak Edges Based on Canny Edge Detection Algorithm. Journal of Aceh Physics Society, 7(2), 61-66. Fadillah, N. (2019). Segmentasi Citra CT Scan Paru-paru dengan Menggunakan Metode Active Contour. Skripsi. Fakultas Teknik. Universitas Samudera: Langsa. Kurniawan, C. (2011). Analisis Ukuran Partikel Menggunakan Free Software Image-J. Seminar Nasional Fisika 2011, Pusat Penelitian Fisika, Lembaga Ilmu Pengetahuan Indonesia, Serpong, 12-13 Juli 2011. Mediatrix, M., Teguh, B.A., Hanung, A.N. (2014). Kajian Pengolahan Citra untuk Analisis Kanker Paru-paru. Seminar Nasional Ilmu Komputer 2014, Yogyakarta. Noviana, R. (2016). Implementasi Algoritma Watershed untuk Segmentasi Nodul Kanker pada Citra CT Scan Kanker Paru. Skripsi. Fakultas Ilmu Komputer dan Teknologi Informasi: Universitas Gunadarma, Depok, Indonesia. Rahmadewi, R. (2016). Analisa Perbandingan Beberapa Metode Deteksi Tepi pada Citra Rountgen Penyakit Paru-Paru. Jurnal Nasional Teknik Elektro. Universitas Singaperbangsa Karawang: Karawang. Rodiah and Madenda, S. (2013). Ekstraksi dan Perhitungan Luas Nodul Citra CT Scan Kanker Paru. Konferensi Nasional Sistem Informasi 2013, STMIK Bumigora Mataram 14-16 Februari 2013. Sinaga, Anita, Sindar, R.M. (2017). Implementasi Teknik Thresholding pada Segmentasi Citra Digital. STMIK Pelita Nusantara: Sumatera Utara, Indonesia. Wulan, T., D., Purnama, K., E., Purnomo, M., H. (2015). Klasifikasi Nodule Paru-Paru dari Citra CT Scan Berdasarkan Gray Level C0-Occurrence Matriks Menggunakan Probabilistic Neural Network. Seminar Teknologi dan Rekayasa (SENTRA). Fakultas Teknik Universitas Muhammadiyah Malang, Purwantoro, 5 Juni 2015. Wason, J. V., dan Nagarajan, A. (2019). Image Processing Techniques for Analyzing CT Scan Images Towards The Early Detection of Lung Cancer. Bioinformation, 15(8), 596.
Refbacks
- There are currently no refbacks.