The influence of AC driving current on magnetoimpedance in [Ni80Fe20/Cu]x/Cu/[Ni80Fe20/Cu]6-x multilayers

Dian Afif Rusydan, Ismail Ismail, Artono Dwijo Sutomo, Utari Utari, Budi Purnama


The phenomenon of magnetoimpedance in the multilayer configuration of [Ni80Fe20/Cu]x/Cu/[Ni80Fe20/Cu]6-x with x = 1, 2, and 3 has been successfully investigated. The electrodeposition method used for the multilayer film preparation on the meander pattered of Cu PCB. The obtained multilayer samples were evaluated the MI effect at room temperature with a frequency of 100 kHz. Here, the MI effects were evaluated for a variation of the AC driving current i.e. IAC = 4 mA, 8 mA, 12 mA, 16 mA, and 20 mA. The MI measurement results show that the multilayer x = 3 has the largest MI ratio and the multilayer with x = 1 was the smallest one. It is indicated that interlayer coupling contributes to the MI effect.  Whereas the skin depth also confirms to contribute the MI ratio that showed the MI ratio increase with the increase of the IAC.


Magnetoimpedance, multilayers thin film, electrodeposition

Full Text:



Aragoneses, P., Zhukov, A. ., Gonzalez, J., Blanco, J. ., & Dominguez, L. (2000). Effect of AC driving current on magneto-impedance effect. Sensors and Actuators A: Physical, 81(1-3), 86–90. doi:10.1016/s0924-4247(99)00092-8

Beato-López, J. J., Pérez-Landazábal, J. I., & Gómez-Polo, C. (2017). Magnetic nanoparticle detection method employing non-linear magnetoimpedance effects. Journal of Applied Physics, 121(16), 163901. doi:10.1063/1.4981536

Buznikov, N. A., & Kurlyandskaya, G. V. (2019). Magnetoimpedance in Symmetric and Non-Symmetric Nanostructured Multilayers: A Theoretical Study. Sensors, 19(8), 1761. doi:10.3390/s19081761

Chen, L., Zhou, Y., Lei, C., Zhou, Z. M., & Ding, W. (2010). Giant magnetoimpedance effect in sputtered single layered NiFe film and meander NiFe/Cu/NiFe film. Journal of Magnetism and Magnetic Materials, 322(19), 2834–2839. doi:10.1016/j.jmmm.2010.04.038

Corte-Leon, P., Zhukova, V., Blanco, J. M., Ipatov, M., Taskaev, S., Churyukanova, M., … Zhukov, A. (2021). Engineering of magnetic properties and magnetoimpedance effect in Fe-rich microwires by reversible and irreversible stress-annealing anisotropy. Journal of Alloys and Compounds, 855, 157460. doi:10.1016/j.jallcom.2020.157460

De Melo, A. S., Bohn, F., Ferreira, A., Vaz, F., & Correa, M. A. (2020). High-frequency magnetoimpedance effect in meander-line trilayered films. Journal of Magnetism and Magnetic Materials, 515, 167166. doi:10.1016/j.jmmm.2020.167166

Ismail, Priyantoro, D., Oktaria, V., & Purnama, B. (2021). Effects of Co-60 gamma irradiation on the surface morphology and magnetic properties in thin film permalloy Ni80Fe20 for magnetic sensor. Journal of Physics: Conference Series, 1825(1), 012041. doi:10.1088/1742-6596/1825/1/012041

Kikuchi, H., Tanii, M., & Umezaki, T. (2020). Effects of parallel and meander configuration on thin-film magnetoimpedance element. AIP Advances, 10(1), 015334. doi:10.1063/1.5130410

Kilic, U., Ross, C. A., & Garcia, C. (2018). Tailoring the Asymmetric Magnetoimpedance Response in Exchange-Biased Ni-Fe Multilayers. Physical Review Applied, 10(3). doi:10.1103/physrevapplied.10.034043

Kurlyandskaya, G. V., Sánchez, M. L., Hernando, B., Prida, V. M., Gorria, P., & Tejedor, M. (2003). Giant-magnetoimpedance-based sensitive element as a model for biosensors. Applied Physics Letters, 82(18), 3053–3055. doi:10.1063/1.1571957

Kurlyandskaya, G. V., Chlenova, A. A., Fernández, E., & Lodewijk, K. J. (2015). FeNi-based flat magnetoimpedance nanostructures with open magnetic flux: New topological approaches. Journal of Magnetism and Magnetic Materials, 383, 220–225. doi:10.1016/j.jmmm.2014.10.129

Panina, L. V., Makhnovskiy, D. P., Dzhumazoda, A., Podgornaya, S. V., Kostishyn, V. G., & Peng, H. X. (2017). Tunable microwave electric polarization in magnetostrictive microwires. Journal of Physics: Conference Series, 903, 012011. doi:10.1088/1742-6596/903/1/012011

Phan, M.-H., & Peng, H.-X. (2008). Giant magnetoimpedance materials: Fundamentals and applications. Progress in Materials Science, 53(2), 323–420. doi:10.1016/j.pmatsci.2007.05.003

Vazquez, M., Zhukov, A. P., Aragoneses, P., Arcas, J., Garcia-Beneytez, J. M., Maria, P., & Hernando, A. (1998). Magneto-impedance in glass-coated CoMnSiB amorphous microwires. IEEE Transactions on Magnetics, 34(3), 724–728. doi:10.1109/20.668076

Vilela, G. L. S., Monsalve, J. G., Rodrigues, A. R., Azevedo, A., & Machado, F. L. A. (2017). Giant magnetoimpedance effect in a thin-film multilayer meander-like sensor. Journal of Applied Physics, 121(12), 124501. doi:10.1063/1.4978918

Wang, T., Guo, L., Lei, C., & Zhou, Y. (2015). Detection of the magnetite by giant magnetoimpedance sensor. Materials Letters, 158, 155–158. doi:10.1016/j.matlet.2015.05.151

Wang, T., He, Y., Chen, Y., Huang, D., Yang, J., Rao, J., … Liu, M. (2019). Preparation of a SiO2‐covered amorphous CoFeSiB microwire and study on the current amplitude effect on the transverse giant magnetoimpedance. Micro & Nano Letters, 14(4), 436–439. doi:10.1049/mnl.2018.5547

Zhou, Z., Zhou, Y., & Cao, Y. (2008). The investigation of giant magnetoimpedance effect in meander NiFe/Cu/NiFe film. Journal of Magnetism and Magnetic Materials, 320(20), e967–e970. doi:10.1016/j.jmmm.2008.04.087

Zhu, Y., Zhang, Q., Li, X., Pan, H., Wang, J., & Zhao, Z. (2019). Detection of AFP with an ultra-sensitive giant magnetoimpedance biosensor. Sensors and Actuators B: Chemical, 293, 53–58. doi:10.1016/j.snb.2019.05.004


  • There are currently no refbacks.