Synthesis of water-soluble chitosan inhibitor from shrimp shells and its corrosion rate on mild steel in acidic solution

Nur Layli Amanah, Ika Dyah Widharyanti, Agung Nugroho


Synthesis of WSCI (Water Soluble Chitosan Inhibitor) from shrimp shell waste is carried out through demineralization, deproteination, and deacetylation processes. WSCI is obtained from monomer termination and H2O2 assistance. WSCI was characterized using Fourier Transform Infrared Spectroscopy (FTIR) and the degree of deacetylation was determined using the baseline method. The effect of adding WSCI to low carbon steel SS400 with a 1 M HCl corrosive environment was studied using the weight loss method at various concentrations and temperatures. The overall results of the research show that WSCI synthesis used in the prevention of corrosion have an inhibition efficiency of up to 74.6% at a concentration of 200 ppm at a temperature of 28oC. Inhibition efficiency and corrosion rate are known to increase with increasing WSCI concentration and corrosion rate decreasing with increasing temperature.


Corrosion; Inhibitor; Water Soluble Chitosan; Shrimp Shell

Full Text:



Arwati, I.G.A. (2018). Effect of Chitosan on the Corrosion Protection of Aluminum in H2SO4 medium, World Chem Eng J, 2 pp.1–5, 2018.

Chamidah, A. C.N. Widiyanti, N.N. Fabiyani, (2019), Utilization of Water-Soluble Chitosan as Antiseptic Hand Sanitizer, J Perikan Univ Gadjah Mada, 21 pp.9–16.

Dompeipen, E.J. (2017). Isolasi dan identifikasi kitin dan kitosan dari kulit udang Windu (Penaeus monodon) dengan spektroskopi inframerah, Maj Biam, 13 pp.31–41.

Dwivedi, D. K. Lepková, T. Becker, (2017), Carbon steel corrosion: a review of key surface properties and characterization methods, RSC Adv, 7 pp.4580–4610.

El-Enin, S. Abo. & A. Amin, (2020), Review of Corrosion Inhibitors for Industrial Applications, Int J Eng Res Rev, 3 pp.127–145, 2020.

Hajji, S. I. Younes, O. Ghorbel-Bellaaj, R. Hajji, M. Rinaudo, M. Nasri, K. Jellouli, (2014), Structural differences between chitin and chitosan extracted from three different marine sources, Int J Biol Macromol, 65 pp.298–306.

Kaczmarek, M.B. K. Struszczyk-Swita, X. Li, M. Szczęsna-Antczak, M. Daroch, (2019), Enzymatic modifications of chitin, chitosan, and chitooligosaccharides, Front Bioeng Biotechnol, 7 pp.243.

Kahya, N. (2018), Water soluble chitosan derivatives and their biological activities: a review, Polym Sci, 4 pp.1–16.

Kumari, S. P. Rath, A.S.H. Kumar, T.N. Tiwari, Extraction and characterization of chitin and chitosan from fishery waste by chemical method, Environ Technol Innov, 3 pp.77–85, 2015.

Makhlouf, A.S.H. M.A. Botello, (2018), Chapter 1 - Failure of the metallic structures due to microbiologically induced corrosion and the techniques for protection, in: A.S.H. Makhlouf, M.B.T.-H. of M.F.A. Aliofkhazraei (Eds.), Handb. Mater. Fail. Anal., Butterworth-Heinemann, pp. 1–18.

Mursida, M. T. Tasir, S. Sahriawati, (2018), Efektifitas Larutan Alkali pada Proses Deasetilasi dari Berbagai Bahan Baku Kitosan, J Pengolah Has Perikan Indones, 21 pp.356–366.

Riskin, J. (2008). Chapter 2 - Corrosion and Protection of Underground and Underwater Structures Attacked by Stray Currents, in: J.B.T.-E. and P. of M. Riskin (Ed.), Electrocorrosion Prot. Met., Elsevier, Amsterdam, pp. 23–35.

Sakthivel, P. P. V Nirmala, S. Umamaheswari, A.A.A. Antony, G. Paruthimal Kalaignan, A. Gopalan, T. Vasudevan, Corrosion inhibition of mild steel by extracts of Pongamia Glabra and Annona Squamosa in acidic media, Bull Electrochem, 15 pp.83–86, 1999.

Salas, C. Z. Thompson, N. Bhattarai, 15 - Electrospun chitosan fibers, in: M.B.T.-E.N. Afshari (Ed.), Electrospun Nanofibers, Woodhead Publishing, 2017: pp. 371–398.

Saleh, C.W. H. Harmami, I. Ulfin, (2017), Pengendalian korosi menggunakan inhibitor kitosan larut air untuk baja lunak dalam media HCl 1M, J Sains Dan Seni ITS, 6 pp.C1–C4.

Shehata, O.S. L.A. Korshed, A. Attia, (2018), Green corrosion inhibitors, past, present, and future, Corros Inhib Princ Recent Appl, pp.121.

Velde, K. Van de. P. Kiekens, (2004), Structure analysis and degree of substitution of chitin, chitosan and dibutyrylchitin by FT-IR spectroscopy and solid state 13C NMR, Carbohydr Polym, 58 pp.409–416.

Wiewiórowska, S. Z. Muskalski, (2015), The application of low and medium carbon steel with multiphase TRIP structure in drawing industry, Procedia Manuf, 2 pp.181–185.