A micromagnetic study: lateral size dependence of the macroscopic properties of rectangular parallelepiped Cobalt-ferrite nanoferromagnetic

Nur Aji Wibowo, Susatyo Pranoto, Cucun Alep Riyanto, Andreas Setiawan

Abstract

The purpose of this study is to provide systematic information through micromagnetic simulations related to the impact of particle size on the magnetic characteristics of Cobalt-ferrite MNP. The micromagnetic computations performed were based on LLG equation. The MNPs sample was simulated in the form of a rectangular parallelepiped with a thickness of 20 nm and square surface with lateral length varies from 10 to 80 nm at an interval of 10 nm. The results of this study indicate that the size changes in Cobalt-ferrite MNP have a significant impact on various magnetic properties, such as the magnitude of the barrier energy, coercive and nucleation fields, magnetization rate, magnetization curve profile, and magnetization mode.Cobalt-ferrite MNP with a size of 10 nm shows a single domain with a relatively short magnetization reversal time and high coercive field.

Keywords

Cobalt-ferrite, micromagnetic, nanoparticles

Full Text:

PDF

References

Akbarzadeh, M. A., Samiei, and S. Davaran. (2012). “Magnetic nanoparticles: preparation, physical properties, and applications in biomedicine,” Nanoscale Res Lett, vol. 7, no. 1, p. 144, doi: 10.1186/1556-276X-7-144.

Amiri S. & H. Shokrollahi. (2013). The role of cobalt ferrite magnetic nanoparticles in medical science,” Materials Science and Engineering: C, vol. 33, no. 1, pp. 1–8, Jan., doi: 10.1016/j.msec.2012.09.003.

Andersson, M. (2013) Modeling and characterization of magnetic nanoparticles intended for cancer treatment.

Arruebo, M. R. Fernández-Pacheco, M. R. Ibarra, and J. Santamaría, (2007), “Magnetic nanoparticles for drug delivery,” Nano Today, vol. 2, no. 3, pp. 22–32, doi: 10.1016/S1748-0132(07)70084-1.

Azizah, U. M. N. M. B. Jessajas, C. Handoyo, and N. A. Wibowo, (2017), “Characteristic of Nano-barium-ferrite as Recording Media Using HAMR Technology,” Chiang Mai J. Sci., vol. 44, no. 4, pp. 1669–1675.

Bance S. et al., (2014), “Grain-size dependent demagnetizing factors in permanent magnets,” Journal of Applied Physics, vol. 116, no. 23, p. 233903, doi: 10.1063/1.4904854.

Bance, S. J. Fischbacher, A. Kovacs, H. Oezelt, F. Reichel, and T. Schrefl. (2015). “Thermal Activation in Permanent Magnets,” JOM, vol. 67, no. 6, pp. 1350–1356, doi: 10.1007/s11837-015-1415-7.

Bedanta, S. A. Barman, W. Kleemann, O. Petracic, and T. Seki. (2013). “Magnetic Nanoparticles: A Subject for Both Fundamental Research and Applications,” Journal of Nanomaterials, vol. 2013, no. 952540 doi: 10.1155/2013/952540.

Chantrell, R. W. G. N. Coverdale, and K. O, (1988), textquotesingleGrady, “Time dependence and rate dependence of the coercivity of particulate recording media,” J. Phys. D: Appl. Phys., vol. 21, no. 9, pp. 1469–1471, doi: 10.1088/0022-3727/21/9/026.

Durst K.-D. & H. Kronmüller, (1987), “The coercive field of sintered and melt-spun NdFeB magnets,” Journal of Magnetism and Magnetic Materials, vol. 68, no. 1, pp. 63–75, doi: 10.1016/0304-8853(87)90097-7.

Fischbacher, J. et al. (2018). “Micromagnetics of rare-earth efficient permanent magnets,” J. Phys. D: Appl. Phys., vol. 51, no. 19, p. 193002, doi: 10.1088/1361-6463/aab7d1.

Fukada T. et al., (2012), “Evaluation of the Microstructural Contribution to the Coercivity of Fine-Grained Nd–Fe–B Sintered Magnets,” Materials Transactions, vol. 53, no. 11, pp. 1967–1971, doi: 10.2320/matertrans. MAW201207.

Ganachari S. V. et al., (2017). “Synthesis Techniques for Preparation of Nanomaterials,” in Handbook of Ecomaterials, L. M.

T. Martínez, O. V. Kharissova, and B. I. Kharisov, Eds. Cham: Springer International Publishing. pp. 1–21.

Ghazanfari, M. R. M. Kashefi, S. F. Shams, and M. R. Jaafari. (2016). “Perspective of Fe3O4 Nanoparticles Role in Biomedical Applications,” Biochemistry Research International, no. 7840161, doi: 10.1155/2016/7840161.

Guo, T. et al. (2018). “The Recent Advances of Magnetic Nanoparticles in Medicine,” Journal of Nanomaterials, vol. 2018, no. 7805147. doi: 10.1155/2018/7805147.

Hadjipanayis, G. C. & A. Kim, (1988) “Domain wall pinning versus nucleation of reversed domains in R‐Fe‐B magnets (invited),” Journal of Applied Physics, vol. 63, no. 8, pp. 3310–3315, doi: 10.1063/1.340821.

Houshiar, M. F. Zebhi, Z. J. Razi, A. Alidoust, and Z. Askari. (2014). “Synthesis of cobalt ferrite (CoFe2O4) nanoparticles using combustion, coprecipitation, and precipitation methods: A comparison study of size, structural, and magnetic properties,” Journal of Magnetism and Magnetic Materials, vol. 371, pp. 43–48, doi: 10.1016/j.jmmm.2014.06.059.

Issa, B. I. M. Obaidat, B. A. Albiss, and Y. Haik, (2013), “Magnetic Nanoparticles: Surface Effects and Properties Related to Biomedicine Applications,” Int J Mol Sci, vol. 14, no. 11, pp. 21266–21305, doi: 10.3390/ijms141121266.

Kafrouni L. & O. Savadogo, (2016), “Recent progress on magnetic nanoparticles for magnetic hyperthermia,” Prog Biomater, vol. 5, no. 3, pp. 147–160, doi: 10.1007/s40204-016-0054-6.

Limaye, M. V. et al. (2009). “High Coercivity of Oleic Acid Capped CoFe2O4 Nanoparticles at Room Temperature,” J. Phys. Chem. B, vol. 113, no. 27, pp. 9070–9076. doi: 10.1021/jp810975v.

Liu, J. P. E. Fullerton, O. Gutfleisch, and D. J. Sellmyer, (2009), Eds., Nanoscale Magnetic Materials and Applications. Springer US.

Majetich, S. A. & Y. Jin, (1999), “Magnetization Directions of Individual Nanoparticles,” Science, vol. 284, no. 5413, pp. 470–473, doi: 10.1126/science.284.5413.470.

Mohamed, R. M. M. M. Rashad, F. A. Haraz, and W. Sigmund. (2010). “Structure and magnetic properties of nanocrystalline cobalt ferrite powders synthesized using organic acid precursor method,” Journal of Magnetism and Magnetic Materials, vol. 322, no. 14, pp. 2058–2064, doi: 10.1016/j.jmmm.2010.01.034.

Moon, J.-H. T. Y. Lee, and C.-Y. You, (2018), “Relation between switching time distribution and damping constant in magnetic nanostructure,” Sci Rep, vol. 8, no. 1, pp. 1–8, Sep. doi: 10.1038/s41598-018-31299-4.

Purnama, B. (2009). “Thermally assisted magnetization reversal in perpendicularly magnetized thin film,” PhD Thesis, 九州大学.

Purnama, B. M. Koga, Y. Nozaki, and K. Matsuyama, (2009), “Stochastic simulation of thermally assisted magnetization reversal in sub-100nm dots with perpendicular anisotropy,” Journal of Magnetism and Magnetic Materials, vol. 321, no. 9, pp. 1325–1330, doi: 10.1016/j.jmmm.2008.12.003.

Purnama, B. R. Rahmawati, A. T. Wijayanta, and Suharyana. (2015). “Dependence of Structural and Magnetic Properties on Annealing Times in Co-precipitated Cobalt Ferrite Nanoparticles,” Journal of Magnetics, vol. 20, no. 3, pp. 207–210.

Purnama, B. Y. Nozaki, and K. Matsuyama, (2007), “Micromagnetic simulation of thermally assisted magnetization reversal in magnetic nanodots with perpendicular anisotropy,” Journal of Magnetism and Magnetic Materials, vol. 310, no. 2, Part 3, pp. 2683–2685, doi: 10.1016/j.jmmm.2006.10.988.

Ramesh, R. G. Thomas, and B. M. Ma, (1988), “Magnetization reversal in nucleation controlled magnets. II. Effect of grain size and size distribution on intrinsic coercivity of Fe‐Nd‐B magnets,” Journal of Applied Physics, vol. 64, no. 11, pp. 6416–6423, doi: 10.1063/1.342055.

Richter H. J. & S. D. Harkness, (2006), “Media for Magnetic Recording Beyond 100 Gbit/in.2,” MRS Bulletin, vol. 31, no. 5, pp. 384–388, doi: 10.1557/mrs2006.98.

Rondinone, A. J. A. C. S. Samia, and Z. J. Zhang. (2000). “Characterizing the magnetic anisotropy constant of spinel cobalt ferrite nanoparticles,” Appl. Phys. Lett., vol. 76, no. 24, pp. 3624–3626, doi: 10.1063/1.126727.

Salas-Solis, M. C. F. Aguilera-Granja, J. Cartes, S. Contreras, and E. E. Vogel, (2004), “Axial anisotropic effects in hysteresis of ±J Ising lattices,” Physical Review B, vol. 70, p. 064404, doi: 10.1103/PhysRevB.70.064404.

Schmidts H. F. & H. Kronmüller, (1991), “Size dependence of the nucleation field of rectangular ferromagnetic parallelepipeds,” Journal of Magnetism and Magnetic Materials, vol. 94, no. 1, pp. 220–234, Mar., doi: 10.1016/0304-8853(91)90131-S.

Schrefl, T. J. Fidler, D. Suess, W. Scholz, and V. Tsiantos, (2006), “Micromagnetic Simulation of Dynamic and Thermal Effects,” in Handbook of Advanced Magnetic Materials, Y. Liu, D. J. Sellmyer, and D. Shindo, Eds. Boston, MA: Springer US, pp. 128–146.

Shir, C. C. (1978). “Computations of the micromagnetic dynamics in domain walls,” Journal of Applied Physics, vol. 49, no. 3, pp. 1841–1843, doi: 10.1063/1.324832.

Srinivasan, S. Y. K. M. Paknikar, D. Bodas, and V. Gajbhiye. (2018). “Applications of cobalt ferrite nanoparticles in biomedical nanotechnology,” Nanomedicine (Lond), vol. 13, no. 10, pp. 1221–1238, doi: 10.2217/nnm-2017-0379.

Stier, M. A. Neumann, A. Philippi-Kobs, H. P. Oepen, and M. Thorwart, (2018), “Implications of a temperature-dependent magnetic anisotropy for superparamagnetic switching,” Journal of Magnetism and Magnetic Materials, vol. 447, pp. 96–100, doi: 10.1016/j.jmmm.2017.09.068.

Suess et al., (2002), “Time resolved micromagnetics using a preconditioned time integration method,” Journal of Magnetism and Magnetic Materials, vol. 248, no. 2, pp. 298–311, Jul. 2002, doi: 10.1016/S0304-8853(02)00341-4.

Szambolics, H. J.-Ch. Toussaint, A. Marty, I. M. Miron, and L. D. Buda-Prejbeanu, (2009), “Domain wall motion in ferromagnetic systems with perpendicular magnetization,” Journal of Magnetism and Magnetic Materials, vol. 321, no. 13, pp. 1912–1918, doi: 10.1016/j.jmmm.2008.12.011.

Uestuener, K. M. Katter, and W. Rodewald, (2006), “Dependence of the Mean Grain Size and Coercivity of Sintered Nd-Fe-B Magnets on the Initial Powder Particle Size,” in 2006 IEEE International Magnetics Conference (INTERMAG), pp. 228–228, doi: 10.1109/INTMAG.2006.375810.

Wibowo, N. A. C. Handoyo, and L. R. Sasongko, (2019), “Thermally activated magnetic switching mode for various thicknesses of perpendicularly ferromagnetic nano-dot,” Nanoscience and Nanotechnology - Asia, vol. 9, no. 2, pp. 259–266, 2019, doi: 10.2174/2210681208666180507101809.

Wibowo, N. A. D. B. Nugroho, and C. A. Riyanto, (2019), “Performance of magnetic switching at the recording temperature in perpendicularly magnetized nanodots,” Journal of Magnetics, vol. 24, no. 1, pp. 17–23, doi: 10.4283/JMAG.2019.24.1.017.

Wibowo, N. A. F. S. Rondonuwu, and B. Purnama, (2014), “Low Writing Field on Perpendicular Nano-ferromagnetic,” Journal of Magnetics, vol. 19, no. 3, pp. 237–240, doi: 10.4283/JMAG.2014.19.3.237.

Xiang, X.-D. & I. Takeuchi, (2003), Combinatorial Materials Synthesis, 1st ed. CRC Press.

Xu, S. Y. Ma, B. Geng, X. Sun, and M. Wang, (2016), “The remanence ratio in CoFe2O4 nanoparticles with approximate single-domain sizes,” Nanoscale Res Lett, vol. 11, no. 1, p. 471, doi: 10.1186/s11671-016-1691-3.

Zeng, H. R. Skomski, L. Menon, Y. Liu, S. Bandyopadhyay, and D. J. Sellmyer, (2002), “Structure and magnetic properties of ferromagnetic nanowires in self-assembled arrays,” Physical Review B, vol. 65, p. 134426, doi: 10.1103/PhysRevB.65.134426.

Zhao, Q. J. Chen, J. Wang, X. Zhang, G. Zhao, and Q. Ma, (2017), “The effect of interface anisotropy on demagnetization progress in perpendicularly oriented hard/soft exchange-coupled multilayers,” Sci Rep, vol. 7, no. 1, pp. 1–11, doi: 10.1038/s41598-017-03169-y