The minimal length case of the Klein Gordon equation with hyperbolic cotangent potential using Nikivorof-Uvarof Method

Isnaini Lilis Elviyanti, Ahmad Aftah Syukron

Abstract

The case of minimal length is applied for the Klein Gordon equation with hyperbolic cotangent potential. The Klein Gordon equation for minimal length case is solved used to approximate solution. The energy eigenvalue and wave function are investigated by the Nikivorof-Uvarof method.

Keywords

Klein Gordon Equation; minimal length; hyperbolic cotangent potential

Full Text:

PDF

References

Azizah, H., Suparmi, & Cari. (2018). Analysis of Minimal Effects on the Relativistic Energy and Wave Function for the Exponential Type Potential Using Supersymmetric Quantum Mechanics. Journal of Physics: Conf. Series 997 , 012017.

Bouaziz, D. (2013). Klein-Gordon Equation with Coulomb Potential in the Presence of a Minimal Length. arXiv:1311.7405v1[quant-ph] .

Cari, C., Suparmi, A., & Elviyanti, I. L. (2017). Approximate Solution for the Minimal Length Case of the Klein Goron Equation for Trigonometric Cotangent Potential Using Asymptotic Iteration Method. Journal of Physics: Conf. Series 909 .

Chabab, M., Batoul, A., Lahbas, A., & Oulne, M. (2016). On gamma-rigid Regime of the Bohr-Mottelson Hamiltonian in the Presence of a Minimal Length. Physics Letters B 758 , 212-216.

Elviyanti, I. L., Pratiwi, N. B., Suparmi, A., & Cari, C. (2018). The Application of Minimal Length in Klein-Gordon Equation with Hulthen Potential Using Asymptotic Iteration Method. Hindawi Advances in Mathematical Physics .

Garay, J. L. (1994). Quantum Gravity and Minimum Length. International Journal of Modern Physics A , 10(2), 145-165.

Goudarzi, H., & Vahidi, V. (2011). Supersymmetric Approach for Eckart Potential Using the NU Method. Adv. Studies Theor. Phys. , 5(10), 469-576.

Ikhdair, S. M. (2011). Bound States of the Klein-Gordon for Exponential-Type Potential in D-Dimensions. Journal of Quantum Information Science , 2011(1), 73-86.

Ikhdair, S., & Hamzavi, M. (2012). Effects of External Fields on a Two-Dimensional Klein-Gordon Particle Under Pseudo-harmonicosilator Interaction. Chin. Phys. B , 21(11).

Merad, M., Zeroual, F., & Benzair, H. (2010). Spinless Relativistic Particle in the Presence a Minimal Length. Electronic Journal of Theoritical Physics , 7(23), 41-56.

Okon, I. B., & Popoola, O. (2015). Bound-State Solution of Schrodinger Equation with Hulthen plus Generalized Exponential Coulomb Potential Using Nikiforov-Uvarov Method. International journal of Recent Adnvances in Physics (IJRAP) , 4(3).

Sprenger, M., Piero Nicolini, P., & Bleicher, M. (2012). Physics on the smallest scales: an introduction to minimal length phenomenology. European Journal of Physics , 33, 853-862.

Suparmi, A., Cari, C., & Elviyanti, I. L. (2017). Solution of Klein Gordon Equation fot Trigonometric Cotangent Potential in the Presence of a Minimal Length Using Asymptotic Iteration Method. Journal of Physics: Conf. Series 909 .

Refbacks

  • There are currently no refbacks.