Study of co-precipitated nanomaterials magnetic MnxCo1-xFe2O4 (with x = 0.50 & 0.75) for Photocatalyst Application in MB degradation

Wahid Sidik Sarifuddin, Utari Utari, Budi Purnama

Abstract

The crystalline structure and magnetic properties of Mn1-xCoxFe2O4 (x = 0 & 0.25) was studied in this report. The ferrite materials were synthesized by the chemical co-precipitation method and calcinated at 1000oC for 5 hours. The obtained materials were characterized by FTIR, XRD and VSM, and for photocatalytic activity was measured by UV-Vis spectrometer. Vibration bands at tetrahedral and octahedral site were corresponded by  = 581.56 cm-1 and  = 465.83 cm-1 and 474.51 cm-1 . The obtained ferrite were confirmed by XRD as spinel structure and shown that the addition of number of Mn decreased crystallite size (D) and x-ray density (ρx), but lattice constants (a) increased. The crystallite size of samples with x = 0.50 was 34.85 nm, and x = 0.75 was 32.17 nm. The magnetic properties of nanoparticles shown that magnetization saturation (Ms)from 42.05 emu/g to 54.16 emu/g increased with the addition of number of Mn. The coercive field (Hc)decreased from 408.27 Oe to 258.37 Oe. Photocatalytic activity was observed by UV-Vis spectrometer, where percentage of MB degradation (E) increase with the addition of number on Mn from 49.08% to 69.06%, either rate constant (kapp) and half life time (t1/2).  Furthermore, ferrite material base Mn-Co-ferrite has good characteristic to applied for photocatalyst.

Keywords

Crystalline structure, magnetic properties, manganese cobalt ferrite, chemical co-precipitation, photocatalyst, Methylene Blue

Full Text:

PDF

References

Ahalya, K. N. Suriyanarayanan, V. Ranjithkumar. (2014). Effect of Cobalt Substitution on Structural and Magnetic Properties and Chromium Adsorption of Manganese Ferrite Nano Particles, J. Magn. Magn. Mater., 372 208-213.

Arshad, M. M. Asghar, M. Junaid, M. F. Warsi, M. N. Rasheed, M. Hashim, M. A. Al-Maghrabi, M. A. Khan. (2019). Structural and Magnetic Properties Variation of Manganese Ferrites via Co-Ni Substitution, J. Magn. Magn. Mater., 474. 98-103

Ashour, A. H. A. I. El-Batal, M. I. A. A. Maksoud, G. S. El-Sayyad, S. Labib, E. Abdeltwab, M. M. El-Okr. (2018). Antimicrobial Activity of Metal Substituted Cobalt Ferrite Nanoparticles Synthesized by Sol-Gel Technique, Particuology., 40.141-151

Atif, M., M. Idrees, M. Nadeem, M. Shiddique, M. W. Ashraf., (2016). Investigation on The Structural, Dielectric and Impedance Analysis of Manganese Substituted Cobalt Ferrite i.e. Co1-xMnxFe2O4 (0.0 ≤ x ≤ 0.4), Roy. Soc. Chem., 620876.

Becyte, V. K. Mazeika, T. Rakickas, V. Pakstas. (2015). Study of Magnetic and Structural Properties of Cobalt-Manganese Ferrite Nanoparticles Obtained by Mechanochemical Synthesis , Mater. Chem. Phys. 1-5.

Boda, N. G. Boda, K.C.B. Naidu, M. Srinivas, K. M. Batoo, D. Ravinde, A. P. Reddy. (2019). Effect of Rare Earth Elements on Low Temperature Magnetic Properties of Ni and Co-Ferrite Nanoparticles , J. Magn. Magn. Mater., 473.228-235.

Caltun, O. G. S. N. Rao, K. H. Rao, B. P. Rao, I. Dumitru, C. O. Kim, C. Kim, (2007). The Influence of Mn Doping Level on Magnetostriction Coefficient of Cobalt Ferrite, J. Magn. Magn. Mater., 316.e618-e620

Cojocariu, A. M. M. Soroceanu, L. Hrib, V. Nica, O. F. Caltun. (2012). Microstructure and Magnetic Properties of Substituted (Cr, Mn) – Cobalt Ferrite Nanoparticles, Mater. Chem. Phys., 135 728-732

Doaga, A. A. M. Cojocariu, W. Amin, F. Heib, P. Bender, R. Hempelmann, O. F. Caltun. (2013). Synthesis and Characterizatons of Manganese Ferrites for Hyperthermia Applications, Mater. Chem. Phys., 143.305-310.

Dou, R. H Cheng, J Ma, S Komarneni. (2020). Manganese doped magnetic cobalt ferrite nanoparticles for dye degradation via a novel heterogeneous chemical catalysis, Mater. Chem. And Phys. 240 122181.

Enrico. C. (2017). Advanced Magnetic and optical materials, in: Asuthosh Tiwari et al (Eds.), Magnetic Nanomaterial-Based Anticancer Therapy, Scrivener Publishing LLC, Beverly. pp. 141-164

Flores, V. C. D. B. Baques, A. V. Glushchenko, R. F. Ziolo, J. A. M. Aquino, R. S. Turtelli, R. Grossinger. (2015). Magnetic Properties of Spinel Cobalt-Manganese Ferrites, IEEE Trans. Magn., Vol. 51, No. 4,

Forgacs, E. T Cserhati, G Oros. (2004). Removal of synthetic dyes from wastewaters: a review, Env. Int. 30.953–971.

Ghahfarokhi, S E. E M Shobegar. (2018). Structural, magnetic, dielectric and optical properties of Sr1-xMnxFe2O4 nanoparticles fabricated by sol-gel method, J. of Alloy. And Comp. 76865-73

Gul, M. & K. Akhtar. (2018). Synthesis and Characterization of Al-doped Manganese Ferrite Uniform Pasrticles for High-Frequency Applications, J. Alloys and Comp.765.1139-1147

Hou, X. J. Feng, X. Xu, M. Zhang. (2010). Synthesis and Characterization of Spinel MnFe2O4 Nanorod by Seed-Hydrothermal Route, J. Alloys and Comp., 491 258-263.

Jabbar, R. S. H. Sabeeh, A. M. Hameed. (2019). Stuctural, Dielectric and Magnetic Properties of Mn2+ Doped Cobalt Ferrite Nanoparticles, J. Magn. Magn. Mater., 31215-6

Karaagac, O. B. B. Yildiz, H. Kockar. (2019). The Influence of Synthesis Parameters on One-Step Synthesized Superparamagnetic Cobalt Ferrite Nanoparticles with High Saturation Magnetization, J. Magn. Magn. Mater., 473. 262-267.

Koseoglu, Y. F. Alan, M. Tan, R. Yilgin, M. Ozturk. (2012). Low Temperature Hydrothermal Synthesis and Characterization of Mn Doped Cobalt Ferrite Nanoparticles, Ceram. Int., 38. 3625-3634

Kotnala, R. K. & J. Shah. Ferrite Material: Nano to Spintronics Regime, in: Handbook of Magnetic Materials, Vol. 23, 2015.

Liu, B. H. J. Ding, Z. L. Dong, C. B. Boothroyd, J. H. Yin, J. B. Yi. (2006). Microstructural Evolution and Its Influence on The Magnetic Properties of CoFe2O4 Powders During Mechanical Milling Microstructural Evolution and Its Influence on The Magnetic Properties of CoFe2O4 Powders During Mechanical Milling, Phys. Rev. B, 74.184427.

Lungu, A. I. Malaescu, C. N. Marin, P. Vlazan, P. Sfirloaga. (2015). The Electrical Properties of Manganese Ferrite Powders Prepared by Two Different Methods, Physica B., 462. 80-85.

Magone, E. M K Kim, H J lee, J H Park. (2018). Testing and Substantial Improvement of TiO2/UV Photocatalysts in The Degradation of Methylene Blue, Ceram. Int.

Maniammal, K. G Madhu, V Biju. (2018). Nanostructured mesoporous NiO as an efficient photocatalyst for degradation of methylene blue: Structure, properties and performance, Nano-Struc. & Nano-Ob. 16 266-275

Marcu, A. S. Pop, F. Dumitrache, M. Mocanu, C. M. Niculite, M. Ghergicheanu, C. P. Lungu, C. Fleaca, R. Ianchis, A. Barbut, C.

Grogoriu, I. Morjan. (2013). Magnetic Iron Oxide Nanoparticles as Drug Delivery System in Breast Cancer, J. Appl. Surf. Sci.

Masunga, N. O K Mmelesi, K K Kefeni, B B Mamba. (2019). Recent Advance in Copper Ferrite Nanoparticles and Nanocomposites Synthesis, Magnetic Properties and Application in Water Treatment : Review, J. of Env. Chem. Eng., 7. 103179

Montgomery, M A. M Elimelech. (2007). Water and sanitation in developing countries: including health in the equation, Env. Sci. Tech.

Mostafa, N. Y. Z. I. Zaki, Z. K. Heiba. (2013). Structutal and Magnetic Properties of Cadmium Substituted Manganese Ferrites Prepared by Hydrothermal Route, J. Magn. Magn. Mater., 329.71-76.

Mota, A L N. L F Albuquerque, L T C Beltrame, O Chiavone-Filho, A Machulek Jr., C A O Nascimento. (2009). Advanced oxidation processes and their application in the petroleum industry: a review, J. Pet. Gas.

Nasrin, S. F. U. Z. Chodhury, S. M. Hoque. (2019). Study of Hyperthermia Temperature of Manganese-Subtituted Cobalt Nano Ferrites Prepared by Chemical Co-Precipitation Method for Biomedical Application, J. Magn. Magn. Mater., 479 126-134.

Pakzad, K. H Alinezhad, M Nasrollahzadeh. (2019). Green synthesis of Ni@Fe3O4 and CuO nanoparticles using Euphorbia maculata extract as photocatalysts for the degradation of organic pollutants under UV-irradiation, Ceram. Int. 45 17173-17182.

Purnama, B. A. T. Wijayanta, Suharyana. (2018). Effect of Calcination Temperature on Structural and Magnetic Properties in Cobalt Ferrite Nano Particles, J. King Saud Univ.

Samavati, A. A F Ismail. (2017). Antibacterial properties of Copper-substituted cobalt ferrite nanoparticles synthesized by co-precipitation method, Particuology 30 158-163

Saputro, D E. Utari, B Purnama. (2019). XRD and FTIR analysis of bismuth substituted cobalt ferrite synthesized by co-precipitation method, IOP Conf. Ser.: J. of Phy:Conf. Ser. 1153.012057

Sonu, V Dutta, S Sharma, P Raizada, A H Bandegharaei, V K Gupta, P Singh. (2019). Review on augmentation in photocatalytic activity of CoFe2O4 via heterojunction formation for photocatalysis of organic pollutants in water, J. of Saudi Chem. Soc.

Swatsitang, E., S. Phokha, S. Hunpratub, B. Usher, A. Bootchanont, S. Maensiri, P. Chindaprasirt. (2016). J. Alloys. Comp., 664.792-797.

Tsay. C. Y. Y. H. Lin, S. U. Jen. (2014). Magnetic, Magnetostrictive, and AC Impedance Properties of Manganese Substituted Cobalt Ferrites, Ceram. Int., 020501-1.

Vlazan, P. I. Miron, P. Sfirloaga. (2014). Cobalt Ferrite Subituted with Mn: Synthesis Method, Characterization and Magnetic Properties, Ceram. Int.

Xi G. & Y. Xi. (2016). Effects on Magnetic Properties of Different Metal Ions Substitution Cobalt Ferrites Synthesis by Sol-gel Auto-combustion Route Using Used Batteries, Mater. Lett., 164.444-448.

Refbacks

  • There are currently no refbacks.