Analytical solution of the Bohr-Mottelson equation in minimal length effect for cotangent hyperbolic potential using the hypergeometric method

Siti Noor Fatimah, A. Suparmi, C. Cari, Isnaini Lilis Elviyanti

Abstract

The rigid deformed nucleus of minimal length effect is investigated using the Bohr-Mottelson equation that influenced by cotangent hyperbolic potential. The Bohr-Mottelson equation in effect a minimum length resolved hypergeometric method for determining the energy spectrum and the wave functions. Energy spectrum was calculated using Matlab software and the wave function is displayed in the form of hypergeometric.

Keywords

Bohr Mottelson, minimum length, hypergeometric

Full Text:

PDF

References

Alimohammadi, M., & Hassanabadi, H. (2017). Harmonic alternatif solution of the gamma-rigid Bohr Hamiltonian in minimal length formalism. Nuclear Physic A, 957, 439-449

Bonatsos, D., Georgoudis, P.E., Lenis, D., Minkov, N & Quesne, C. (2011). Bohr Hamiltonian with a deformation – dependent mass term for the Davidson potential. Physical Review C, 83,044321

Cari, C., Suparmi, A., Deta, U.A., & Werdiningsih, I.S. (2013). Solution of Dirac Equations for Cotangent Potential with Coulomb-type Tensor Interaction for Spin and Pseudospin Symmetries Using Romanovski Polynomials. Makara J. Sci, 93-102

Chabab, M., Lahbas, A., & Oulne, M. (2015). Bohr Mottelson with Hulthen plus ring-shaped potential for triaxial nuclei. The European physical Journal A, 51, 13101-13113

Chabab, M., El Batoul, A., Lahbas, A., & Oulne, M. (2016). On γ-rigid regime of the Bohr Mottelson Hamiltonian in the presence of a minimal length. Physics Letters B, 758, 212-218

Elviyanti, I.L., Suparmi, A., Cari,C., Nugraha, D,A., & Pratiwi, B, N. (2017). Solution of Klein Gordon equation for hyperbolic cotangent potential in the presence of a minimal length using Hypergeometric method. IOP Conf. Series : Journal of Physics: Conf. Series 909 012023

Garay, L.J. (1994). Quantum gravity and minimum length. International Journal of Modern Physics A,10, 145-165

Hossenfelder, S. (2004). The Minimal Length And Large Extra Dimensions. Modern Physics Letters A, 19, 37, 2727–2744

Naderia, L & Hassanabadi, H. (2016). Bohr Hamiltonian with Eckart potential for triaxial nuclei. The European Physical Journal Plus, 131, 1-6

Suparmi. (2011). Mekanika Kuantum II. FMIPA UNS, Surakarta

Suparmi, A., Cari, C., & Elviyanti, I.L. (2017). Solution of Klein Gordon equation for trigonometric cotangent potential in the presence of a minimal length using Asymtotic Iteration Method. IOP Conf. Series : Journal of Physics: Conf. Series 909 012003

Refbacks

  • There are currently no refbacks.