Gamma passing rate evaluation for IMRT and VMAT techniques based on gantry angles

Ummu Mar'atu Zahro, Fatimatuz Zahroh, Fiki Hurum Maqsuroh, Wahyu Edy Wibowo

Abstract

Introduction: The accuracy of radiation dose delivery in advanced techniques such as Intensity Modulated Radiation Therapy (IMRT) and Volumetric Modulated Arc Therapy (VMAT) is highly dependent on the consistency of gantry angle performance. This study aims to evaluate the effect of gantry angle variations on the gamma passing rate (GPR) in IMRT and VMAT treatment plans. Methods: IMRT and VMAT plans were created using the Monaco Treatment Planning System on a homogeneous slab phantom and delivered within a range of gantry angles, including 90°, 180°, 270°, and 360°. Measurements were performed using the 2D array PTW Octavius 1500 that delivered by Linac Elekta Synergy and analyzed with the Verisoft software, applying a 2%/2 mm gamma index with a 10% threshold and a 97% gamma passing rate criterion. Results: All plans achieved GPR above 97%. VMAT demonstrated higher GPR values than IMRT at gantry angles of 90°, 180°, 270°, with the largest difference of 0.8% observed at 270°. IMRT showed a slightly higher GRP value than VMAT at range gantry 360° with a difference of 0.1%.  Conclusion: The higher GPR value observed in VMAT indicates greater stability in relation to gantry angle variations. Although, IMRT performed slightly better at 360°, the difference was minimal. In general, gantry angle dependence was observed in both techniques, but the variation was not clinically significant.

Keywords

IMRT; VMAT; GPR; Gantry Angle

Full Text:

PDF

References

Borne, E. S.-V. de, & Nobile, M. (2024, December 10). Indonesia Launches New National Cancer Control Plan Building on Review Mission Recommendations [News]. https://www.iaea.org/newscenter/news/indonesia-launches-new-national-cancer-control-plan-building-on-review-mission-recommendations

Chan, G., Chin, L., Abdellatif, A., Bissonnette, J., Buckley, L., Comsa, D., Granville, D., King, J., Rapley, P., & Vandermeer, A. (2021). Survey of patient-specific quality assurance practice for IMRT and VMAT. J Appl Clin Med Phys., 22(7), 155–164. https://doi.org/10.1002/acm2.13294

Clements, M., Schupp, N., Tattersall, M., Brown, A., & Larson, R. (2018). Monaco treatment planning system tools and optimization processes. Med Dosim, 43(2), 106–117. https://doi.org/10.1016/j.meddos.2018.02.005

Dogan, N., Mijnheer, B., Padgett, K., Nalichowski, A., Wu, C., Nyflot, M., Olch, A., Papanikolaou, N., Shi, J., Holmes, S., Moran, J., & Greer, P. (2023). AAPM Task Group Report 307: Use of EPIDs for Patient-Specific IMRT and VMAT QA. Med Phys, 50, e865–e903. https://doi.org/doi.org/10.1002/mp.16536

Ferlay, J., Ervik, M., Lam, F., Laversanne, M., Colombet, M., Mery, L., Pineros, M., Znaor, A., Soerjamataram, I., & Bray, F. (2024). Global Cancer Observatory: Cancer Today. International Agency for Reaserchon Cancer. https://gco.iarc.who.int/media/globocan/factsheets/populations/360-indonesia-fact-sheet.pdf#page=2.92

Gorobets, V., Vries, W., Brand, N., Foppen, T., & Wopereis, A. (2024). MR-OCTAVIUS 4D with 1500 MR and 1600 MR arrays is suitable for plan QA in a 1.5 T MRI-linac. Phys. Med. Biol., 69, 17NT01.

Han, Z., Ng, S., Bhagwat, M., Lyatskaya, Y., & Zygmanski, P. (2010). Evaluation of MatriXX for IMRT and VMAT dose verifications in peripheral dose regions. Med Phys, 37(7). https://doi.org/10.1118/1.3455707

Khan, F., & Gibbons, J. (2014). Khan’s The Physics of Radiation Therapy (Fifth Edition). Lippincott Williams & Wilkins.

Kumar, S., Cheruparambil, A., Thokkayil, A., Padmini, S., & Perumangat, A. (2015). Clinically evaluating directional dependence of 2D seven29 ion-chamber array with different IMRT plans. Int J Cancer Ther Oncol, 3(4), 348.

Miften, M., Olch, A., Mihailidis, D., Moran, J., Pawlicki, T., Molineu, A., Li, H., Wijesooriya, K., Shi, J., Xia, P., Papanikolaou, N., & Low, D. (2018). Tolerance limits and methodologies for IMRT measurement-based verification QA: Recommendations of verification QA: Recommendations of AAPM Task Group No. 218. Med. Phys, 45, e53–e83.

Octavianus, S., & Godhowiardjo, S. (2022). Radiation Therapy in Indonesia: Estimating Demand as Part of a National Cancer Control Strategy. Applied Radiation Oncology, 1, 35–42.

Pyshniak, V., Fotina, I., Zverava, A., Siamkouski, S., Zayats, E., Kopanitsa, G., & Okuntsau, D. (2014). Efficiency of biological versus physical optimization for single-arc VMAT for prostate and head and neck cases. JOURNAL OF APPLIED CLINICAL MEDICAL PHYSICS, 15(4), 39–53.

Radhakrishnan, S., Chandrasekaran, A., Sarma, Y., Balakrishnan, S., & Nandigam, J. (2017). Dosimetric Comparison between Single and Dual Arc-Volumetric Modulated Arc Radiotherapy and Intensity Modulated Radiotherapy for Nasopharyngeal Carcinoma Using a Simultaneous Integrated Boost Technique. Asian Pac J Cancer Prev, 1(18), 1395–1402. https://doi.org/10.22034/APJCP.2017.18.5.1395.

Senthilkumar, K., & Maria Das, K. (2019). Comparison of biological-based and dose volume-based intensity-modulated radiotherapy plans generated using the same treatment planning system. 2019 Mar;15(Supplement):. Doi: . PMID: 30900617. J Cancer Res Ther, 15, S33–S38. https://doi.org/10.4103/jcrt.JCRT_956_16

Sukhikh, E., Sheino, I., & Vertinsky, A. (2017). Biological-based and physical-based optimization for biological evaluation of prostate patient’s plans." In PHYSICS OF CANCER: INTERDISCIPLINARY PROBLEMS AND CLINICAL APPLICATIONS: Author(s), 2017. Proceedings of the International Conference on Physics of Cancer: Interdisciplinary Problems and Clinical Applications, 1882, 020074. http://dx.doi.org/10.1063/1.5001653.

Teng, C., Lin, S., Lovelock, D., & Lim, S. (2024). Dosimetric commissioning of a high-resolution CMOS 2D detector array for patient-specific QA of single-isocenter multi-target VMAT stereotactic radiosurgery. Journal of Radiation Research, 65(6), 787–797.

Zhou, Y., Liu, Y., Chen, M., Fang, J., Xiao, L., Huang, S., Qi, Z., Deng, X., Zhang, J., & Peng, Y. (2024). Commissioning and clinical evaluation of a novel high-resolution quality assurance digital detector array for SRS and SBRT. J Appl Clin Med Phys, 25, e14258. https://doi.org/doi.org/10.1002/acm2.14258

Zwan, B., Barnes, M., Fuangrod, T., Stanton, C., O’Connor, D., Keall, P., & Greer, P. (2016). An EPID-based system for gantry-resolved MLC quality assurance for VMAT. JOURNAL OF APPLIED CLINICAL MEDICAL PHYSICS, 17, 348–365.

Refbacks

  • There are currently no refbacks.