Green composite Fe₃O₄/CaO (0.5 g) for biodiesel production with preliminary structural, functional and morphological characterization

Sri Rahmawati, Sri Wahyuni, Fernando Putra Moestiono

Abstract

The development of environmentally friendly heterogeneous catalysts is crucial to support sustainable biodiesel production. This study aims to develop an eco-friendly Fe₃O₄/CaO (0.5 g) composite synthesized from local iron sand of Tulungagung as the Fe₃O₄ source and waste eggshells as the CaO source for potential catalytic applications in biodiesel production. The synthesis was carried out through a simple method while maintaining sustainability aspects by utilizing natural resources and agricultural waste. The composite was characterized using X-ray Diffraction (XRD) to identify the crystal structure, Fourier Transform Infrared Spectroscopy (FTIR) to investigate functional groups, and Scanning Electron Microscopy–Energy Dispersive X-ray Mapping (SEM–EDX Mapping). The results showed that the obtained composite consisted of two dominant phases, namely Fe₃O₄ as the magnetic phase and CaO as the active basic phase, with average crystallite sizes of 10.08 nm and 31.07 nm, respectively, indicating a high degree of crystallinity. FTIR analysis confirmed the presence of characteristic Fe–O and Ca–O functional groups at the wavenumber range of 500–600 cm⁻¹, while SEM images revealed an agglomerated oval-spherical morphology with an average particle size of 57.36 ± 0.85 nm. EDX analysis further confirmed the presence of Fe, O, and Ca elements, with Ca distribution, though relatively small, remaining consistent as active basic sites. The combination of crystalline properties, nanometer-scale morphology, and elemental composition supports the role of Fe₃O₄/CaO as a heterogeneous catalyst that is not only easily separable by a magnetic field but also potentially enhances catalytic activity in transesterification reactions. Therefore, this material demonstrates strong prospects as an environmentally friendly heterogeneous catalyst derived from local resources to support sustainable biodiesel production.

Keywords

Fe₃O₄/CaO composite; iron sand; eggshells; biodiesel; green catalyst

Full Text:

PDF

References

Almrafee, M., & Akaileh, M. (2024). Customers’ purchase intention of renewable energy in Jordan: The case of solar panel systems using an extended theory of planned behavior (TPB). International Journal of Energy Sector Management, 18(3), 457–473. https://doi.org/10.1108/IJESM-01-2023-0002

Basumatary, S. F., Brahma, S., Hoque, M., Das, B. K., Selvaraj, M., Brahma, S., & Basumatary, S. (2023). Advances in CaO-based catalysts for sustainable biodiesel synthesis. Green Energy and Resources, 1(3), 100032. https://doi.org/10.1016/j.gerr.2023.100032

Cerón Ferrusca, M., Romero, R., Martínez, S. L., Ramírez-Serrano, A., & Natividad, R. (2023). Biodiesel Production from Waste Cooking Oil: A Perspective on Catalytic Processes. Processes, 11(7), 1952. https://doi.org/10.3390/pr11071952

Chavez-Esquivel, G., Ortega-Hernández, J. M., García-Camacho, G. G., García-Martínez, J. C., & Tavizón-Pozos, J. A. (2025). Microwave-Assisted Transesterification of Soybean Oil Using Eggshell-Derived SrFe/CaO Catalysts. BioEnergy Research, 18(1), 82. https://doi.org/10.1007/s12155-025-10886-0

Eddy, N. O., Jibrin, J. I., Ukpe, R. A., Odiongenyi, A., Iqbal, A., Kasiemobi, A. M., Oladele, J. O., & Runde, M. (2024). Experimental and theoretical investigations of photolytic and photocatalysed degradations of crystal violet dye (CVD) in water by oyster shells derived CaO nanoparticles (CaO NP). Journal of Hazardous Materials Advances, 13, 100413. https://doi.org/10.1016/j.hazadv.2024.100413

Encinar, J. M., González, J. F., Martínez, G., & Nogales-Delgado, S. (2022). Transesterification of Soybean Oil through Different Homogeneous Catalysts: Kinetic Study. Catalysts, 12(2), 146. https://doi.org/10.3390/catal12020146

Hanif, M., Bhatti, I. A., Hanif, M. A., Rashid, U., Moser, B. R., Hanif, A., & Alharthi, F. A. (2023). Nano-Magnetic CaO/Fe2O3/Feldspar Catalysts for the Production of Biodiesel from Waste Oils. Catalysts, 13(6), 998. https://doi.org/10.3390/catal13060998

Hart, A., & Aliu, E. (2022). Materials from Eggshells and Animal Bones and Their Catalytic Applications. In D. Pham Minh (Ed.), Design and Applications of Hydroxyapatite‐Based Catalysts (1st ed., pp. 437–479). Wiley. https://doi.org/10.1002/9783527830190.ch13

Helmi, M., & Hemmati, A. (2021). Synthesis of magnetically solid base catalyst of NaOH/Chitosan-Fe3O4 for biodiesel production from waste cooking oil: Optimization, kinetics and thermodynamic studies. Energy Conversion and Management, 248, 114807. https://doi.org/10.1016/j.enconman.2021.114807

Helwani, Z., Ramli, M., Saputra, E., Bahruddin, B., Yolanda, D., Fatra, W., Idroes, G. M., Muslem, M., Mahlia, T. M. I., & Idroes, R. (2020). Impregnation of CaO from Eggshell Waste with Magnetite as a Solid Catalyst (Fe3O4/CaO) for Transesterification of Palm Oil Off-Grade. Catalysts, 10(2), 164. https://doi.org/10.3390/catal10020164

Heras, A., & Gupta, J. (2024). Fossil fuels, stranded assets, and the energy transition in the Global South: A systematic literature review. WIREs Climate Change, 15(1), e866. https://doi.org/10.1002/wcc.866

Irianti, F. D. D., Sutanto, H., Priyono, P., Wibowo, A. A., Syahida, A. N., & Alkian, I. (2021). Characterization structure of Fe3 O4 @PEG-4000 nanoparticles synthesized by co-precipitation method. Journal of Physics: Conference Series, 1943(1), 012014. https://doi.org/10.1088/1742-6596/1943/1/012014

Istadi, I., Prasetyo, S. A., & Nugroho, T. S. (2015). Characterization of K2O/CaO-ZnO Catalyst for Transesterification of Soybean Oil to Biodiesel. Procedia Environmental Sciences, 23, 394–399. https://doi.org/10.1016/j.proenv.2015.01.056

Jie, H., Khan, I., Alharthi, M., Zafar, M. W., & Saeed, A. (2023). Sustainable energy policy, socio-economic development, and ecological footprint: The economic significance of natural resources, population growth, and industrial development. Utilities Policy, 81, 101490. https://doi.org/10.1016/j.jup.2023.101490

Kang, J., Hu, C., Liu, X., Zhou, H., Lin, X., & Gu, J. (2024). One-Pot Synthesis of Magnetic Nanocellulose/Fe3 O4 Hybrids Using FeCl3 as Cellulose Hydrolytic Medium and Fe3 O4 Precursor. ACS Sustainable Chemistry & Engineering, 12(15), 5917–5926. https://doi.org/10.1021/acssuschemeng.3c08582

Kibar, M. E., Hilal, L., Çapa, B. T., Bahçıvanlar, B., & Abdeljelil, B. B. (2023). Assessment of Homogeneous and Heterogeneous Catalysts in Transesterification Reaction: A Mini Review. ChemBioEng Reviews, 10(4), 412–422. https://doi.org/10.1002/cben.202200021

Mazaheri, H., Ong, H. C., Amini, Z., Masjuki, H. H., Mofijur, M., Su, C. H., Anjum Badruddin, I., & Khan, T. M. Y. (2021). An Overview of Biodiesel Production via Calcium Oxide Based Catalysts: Current State and Perspective. Energies, 14(13), 3950. https://doi.org/10.3390/en14133950

Murphy, R. (2024). What is undermining climate change mitigation? How fossil-fuelled practices challenge low-carbon transitions. Energy Research & Social Science, 108, 103390. https://doi.org/10.1016/j.erss.2023.103390

Rahim, M., Liu, D., Du, W., & Zhao, X. (2024). Techno-economic assessment of co-production of biodiesel and epoxy fatty acid methyl ester as renewable fuel and plasticizer from waste cooking oil. Chemical Engineering Journal, 499, 156363. https://doi.org/10.1016/j.cej.2024.156363

Rahmawati, S., Taufiq, A., Hidayat, A., Nikmah, A., Sunaryono, & Masruroh. (2020). Green synthesis of Fe3O4 nanoparticles based on biosurfactant Saccharum officinarum extract. 040035. https://doi.org/10.1063/5.0015631

Reyes-Vallejo, O., Sánchez-Albores, R. M., Escorcia-García, J., Cruz-Salomón, A., Bartolo-Pérez, P., Adhikari, A., Del Carmen Hernández-Cruz, M., Torres-Ventura, H. H., & Esquinca-Avilés, H. A. (2025). Green synthesis of CaO-Fe₃O₄ composites for photocatalytic degradation and adsorption of synthetic dyes. Environmental Science and Pollution Research, 32(15), 9901–9925. https://doi.org/10.1007/s11356-025-36310-w

Rozina, Ahmad, M., & Zafar, M. (2023). Synthesis of green and non-toxic biodiesel from non-edible seed oil of Cichorium intybus using recyclable nanoparticles of MgO. Materials Today Communications, 35, 105611. https://doi.org/10.1016/j.mtcomm.2023.105611

Sahadat Hossain, Md., Jahan, S. A., & Ahmed, S. (2023). Crystallographic characterization of bio-waste material originated CaCO3, green-synthesized CaO and Ca(OH)2. Results in Chemistry, 5, 100822. https://doi.org/10.1016/j.rechem.2023.100822

Shahid, F., Alam, M., Park, J.-Y., Choi, Y., Park, C.-J., Park, H.-K., & Yi, C.-Y. (2025). Bioinspired Morphing in Aerodynamics and Hydrodynamics: Engineering Innovations for Aerospace and Renewable Energy. Biomimetics, 10(7), 427. https://doi.org/10.3390/biomimetics10070427

Sher, F., Hameed, S., Smječanin Omerbegović, N., Chupin, A., Ul Hai, I., Wang, B., Heng Teoh, Y., & Joka Yildiz, M. (2025). Cutting-edge biomass gasification technologies for renewable energy generation and achieving net zero emissions. Energy Conversion and Management, 323, 119213. https://doi.org/10.1016/j.enconman.2024.119213

Singh, P. K., & Sunil, J. (2025). Exploring the potential antibacterial mechanism of the goose eggshell-derived CaO nanoparticles for deactivation of pharmaceutical wastages and bacteria. JCIS Open, 19, 100151. https://doi.org/10.1016/j.jciso.2025.100151

Solarin, S. A. (2020). An environmental impact assessment of fossil fuel subsidies in emerging and developing economies. Environmental Impact Assessment Review, 85, 106443. https://doi.org/10.1016/j.eiar.2020.106443

Upadhyay, S., Parekh, K., & Pandey, B. (2016). Influence of crystallite size on the magnetic properties of Fe3O4 nanoparticles. Journal of Alloys and Compounds, 678, 478–485. https://doi.org/10.1016/j.jallcom.2016.03.279

Wang, K., Horlyck, J., An, N., & Voutchkova-Kostal, A. (2024). Homogeneous vs. heterogeneous catalysts for acceptorless dehydrogenation of biomass-derived glycerol and ethanol towards circular chemistry. Green Chemistry, 26(7), 3546–3564. https://doi.org/10.1039/D3GC04378A

Wang, X., Lu, Y., Chen, C., Yi, X., & Cui, H. (2024). Total-factor energy efficiency of ten major global energy-consuming countries. Journal of Environmental Sciences, 137, 41–52. https://doi.org/10.1016/j.jes.2023.02.031

Wirawan, S. S., Solikhah, M. D., Setiapraja, H., & Sugiyono, A. (2024). Biodiesel implementation in Indonesia: Experiences and future perspectives. Renewable and Sustainable Energy Reviews, 189, 113911. https://doi.org/10.1016/j.rser.2023.113911

Zhang, J., Zheng, B., Zhang, C., Xie, L., & Fang, C. (2023). Calcined waste shells as a promising, eco‐friendly adsorbent, antimicrobial, food preservative, and food packaging material: A mini review. Journal of Food Process Engineering, 46(12), e14477. https://doi.org/10.1111/jfpe.14477

Zhou, Y., Ning, Z., Huang, K., Guo, S., Xu, C.-Y., & Chang, F.-J. (2025). Sustainable energy integration: Enhancing the complementary operation of pumped-storage power and hydropower systems. Renewable and Sustainable Energy Reviews, 210, 115175. https://doi.org/10.1016/j.rser.2024.115175

Refbacks

  • There are currently no refbacks.