E-LEARNING AS A SUPPORTING STUDY IN THE FIELD OF VOCATIONAL AND AUTOMOTIVE ENGINEERING
Abstract
Keywords
Full Text:
PDFReferences
Apse-Apsitis, P., Avotins, A., Krievs, O., & Ribickis, L. (2012). Practically oriented e-learning workshop for knowledge improvement in engineering education computer control of electrical technology. IEEE Global Engineering Education Conference, EDUCON. https://doi.org/10.1109/EDUCON.2012.6201108
Arkorful, V., & Abaidoo, N. (2015). The role of e-learning, advantages and disadvantages of its adoption in higher education. International Journal of Instructional Technology and Distance Learning, 12(1), 29–42.
Bogdan, R., & Ancusa, V. (2016). Developing e-learning solutions in the automotive industry Razvan. World Journal on Educational Technology, 8(2), 139–146. https://doi.org/10.1099/vir.0.2008/003913-0
Böhner, J., Weeber, M., Kuebler, F., & Steinhilper, R. (2015). Developing a learning factory to increase resource efficiency in composite manufacturing processes. Procedia CIRP, 32(Clf), 64–69. https://doi.org/10.1016/j.procir.2015.05.003
Calisir, F., Gumussoy, C. A., Bayraktaroglu, A. E., & Karaali, D. (2014). Predicting the Intention to Use a Web-Based Learning System: Perceived Content Quality, Anxiety, Perceived System Quality, Image, and the Technology Acceptance Model. Human Factors and Ergonomics in Manufacturing & Service Industries, 5, 515–531. https://doi.org/10.1002/hfm
Chanaron, J. J. (2002). SMEs’ requirements and needs for e-learning: a survey in the European automotive industry. International Journal of Automotive Technology and Management, 2(3–4), 319–334. https://doi.org/10.1504/ijatm.2002.002092
Chanaron, J. J. (2006). Evaluating e-learning among automotive Small-Medium Suppliers (1) Developing an evaluation tool kit. International Journal of Automotive Technology and Management, 6(1), 115–136. https://doi.org/10.1504/IJATM.2006.008938
Chowdhury, H., Alam, F., & Mustary, I. (2019). Development of an innovative technique for teaching and learning of laboratory experiments for engineering courses. Energy Procedia, 160(2018), 806–811. https://doi.org/10.1016/j.egypro.2019.02.154
Ghirardini, B. (2011). E-learning methodologies: A guide for designing and developing e-learning courses. In Food and Agriculture Organization of the United Nations (FAO). https://doi.org/I2516E/1/11.11
Gutiérrez, I., Sánchez, M. M., Castañeda, L., & Prendes, P. (2017). Learning e-Learning Skills for Vocational Training Using e-Learning: The Experience Pilonting the (e)VET2EDU Project Course. International Journal of Information and Education Technology, 7(4), 301–308. https://doi.org/10.18178/ijiet.2017.7.4.885
Herman, M., Pentek, T., & Otto, B. (2015). Design Principles for Industrie 4.0 Scenarios: A Literature Review. 49th Hawaiian International Conference on Systems Science, 1–16. https://doi.org/10.1016/j.jcis.2017.12.027
Huang, S. M., Wei, C. W., Yu, P. T., & Kuo, T. Y. (2006). An empirical investigation on learners’ acceptance of e-learning for public unemployment vocational training. International Journal of Innovation and Learning, 3(2), 174–185. https://doi.org/10.1504/IJIL.2006.008419
Inayat, I., Amin, R. U., Inayat, Z., & Salim, S. S. (2013). Effects of Collaborative Web Based Vocational Education and Training (VET) on Learning Outcomes. Computers and Education, 68, 153–166. https://doi.org/10.1016/j.compedu.2013.04.027
Johansson, C., Larsson, T., & Tatipala, S. (2017). Product-Service Systems for Functional Offering of Automotive Fixtures: Using Design Automation as Enabler. Procedia CIRP, 64, 411–416. https://doi.org/10.1016/j.procir.2017.03.006
Karaali, D., Gumussoy, C. A., & Calisir, F. (2011). Factors affecting the intention to use a web-based learning system among blue-collar workers in the automotive industry. Computers in Human Behavior, 27(1), 343–354. https://doi.org/10.1016/j.chb.2010.08.012
Kates, A. W., Wu, H., & Coryn, C. L. S. (2018). The effects of mobile phone use on academic performance: A meta-analysis. Computers and Education, 127(March), 107–112. https://doi.org/10.1016/j.compedu.2018.08.012
Kitchenham, B., Pearl Brereton, O., Budgen, D., Turner, M., Bailey, J., & Linkman, S. (2009). Systematic literature reviews in software engineering - A systematic literature review. Information and Software Technology, Vol. 51, pp. 7–15. https://doi.org/10.1016/j.infsof.2008.09.009
Liang, J. S. (2008). The troubleshooting task implementation in automotive chassis using virtual interactive technique and knowledge-based approach. Journal of Network and Computer Applications, 31(4), 712–734. https://doi.org/10.1016/j.jnca.2007.11.001
Martin, J., Bohuslava, J., & Igor, H. (2018). Augmented reality in education 4.0. 2018 IEEE 13th International Scientific and Technical Conference on Computer Sciences and Information Technologies, CSIT 2018 - Proceedings, 1, 231–236. https://doi.org/10.1109/STC-CSIT.2018.8526676
Mukhanov, B., Omirbekova, Z., Alimanova, M., Jumadilova, S., Kozhamzharova, D., & Baimuratov, O. (2015). A model of virtual training application for simulation of technological processes. Procedia Computer Science, 56(1), 177–182. https://doi.org/10.1016/j.procs.2015.07.192
Müller, E., Grach, M., & Bezděková, J. (2015). New Concept in e-learning Materials Based on Practical Projects. Procedia - Social and Behavioral Sciences, 176, 155–161. https://doi.org/10.1016/j.sbspro.2015.01.456
Nafukho, F. M., Alfred, M., Chakraborty, M., Johnson, M., & Cherrstrom, C. A. (2017). Predicting workplace transfer of learning: A study of adult learners enrolled in a continuing professional education training program. European Journal of Training and Development, 41(4), 327–353. https://doi.org/10.1108/EJTD-10-2016-0079
Ordaz, N., Romero, D., Gorecky, D., & Siller, H. R. (2015). Serious Games and Virtual Simulator for Automotive Manufacturing Education & Training. Procedia Computer Science, 75(Vare), 267–274. https://doi.org/10.1016/j.procs.2015.12.247
Ozkan, M., & Solmaz, B. (2015). Mobile Addiction of Generation Z and its Effects on their Social Lifes. Procedia - Social and Behavioral Sciences, 205(May), 92–98. https://doi.org/10.1016/j.sbspro.2015.09.027
Prastiyo, W., Djohar, A., & Purnawan, P. (2018). Development of Youtube integrated google classroom based e-learning media for the light-weight vehicle engineering vocational high school. Jurnal Pendidikan Vokasi, 8(1), 53. https://doi.org/10.21831/jpv.v8i1.17356
Rhodes, E., & Carter, R. (2003). Collaborative learning in advanced supply systems: The KLASS pilot project. Journal of Workplace Learning, 15(6), 271–279. https://doi.org/10.1108/13665620310488566
Sadikin, A., & Hakim, N. (2019). Pengembangan Media E-Learning Interaktif Dalam Menyongsong Revolusi Industri 4.0 Pada Materi Ekosistem Untuk Siswa SMA. Biodik, 5(2), 131–138. https://doi.org/10.22437/bio.v5i2.7590
Santoso, H. B., Isal, R. Y. K., Basaruddin, T., Sadira, L., & Schrepp, M. (2015). Research-in-progress: User experience evaluation of Student Centered E-Learning Environment for computer science program. Proceedings - 2014 3rd International Conference on User Science and Engineering: Experience. Engineer. Engage, i-USEr 2014, 52–55. https://doi.org/10.1109/IUSER.2014.7002676
Stiller, K. D., & Köster, A. (2016). Learner Attrition In An Advanced Vocational Online Training: The Role OF Computer Attitude, Computer Anxiety, And Online Learning Experience. European Journal of Open, Distance and e-Learning, 19(2), 129–146. https://doi.org/10.1515/eurodl
Triyono, M. B. (2015). The Indicators of Instructional Design for E- learning in Indonesian Vocational High Schools. Procedia - Social and Behavioral Sciences, 204(November 2014), 54–61. https://doi.org/10.1016/j.sbspro.2015.08.109
Tulgan, B. (2013). Meet Generation Z : The second generation within the giant " Millennial " cohort. RainmakerThinking, Inc., 1–13. Retrieved from http://rainmakerthinking.com/assets/uploads/2013/10/Gen-Z-Whitepaper.pdf
Valdivia, R., & Nussbaum, M. (2007). Face-to-face collaborative learning in computer science classes. International Journal of Engineering Education, 23(3), 434–440.
Wahono, R. S. (2015). A Systematic Literature Review of Software Defect Prediction: Research Trends, Datasets, Methods and Frameworks. Journal of Software Engineering, 1(1), 1–16. https://doi.org/2356-3974
Refbacks
- There are currently no refbacks.