EXPERIMENTAL INVESTIGATION ON DRY CELL HHO GENERATOR WITH CATALYST VARIATION FOR REDUCING THE EMISSIONS

Basori Basori

Abstract

Air pollution is now largely attributable to the use of vehicles that produce high pollution. The purpose of this study is to determine the contribution of HHO generator in reducing air pollution by looking at the emission level of exhaust gas. In addition, to know the type of catalyst is the best in lowering the level of these pollutants.
The research using an experimental method. The subject is Honda Supra X 125 the Year 2013 by adding a dry cell HHO generator. Emissions data collection using gas analyzer against the use of HHO generator with catalyst variation (KOH, NaOH, and NAHCO3). Data analysis was done by descriptive quantitative.
The results showed (1) All types of catalysts studied (KOH, NaOH, and NAHCO3) as electrolyte solution media for HHO generators which greatly affected the reduction of CO and HC emissions in vehicles, (2) Catalyst NaOH type is the most effective catalyst in reducing CO and HC emissions. This is evidenced by the results of NaOH solution to obtain average CO gas concentration is 0.13% or a decrease of 81.74% and the use of NaOH solution to get an average concentration of HC gas is 524.33 ppm or a decrease of 69.62% when compared to standard conditions (without HHO generator).

Keywords

Emission, HHO Generator, catalyst, electrolyte

Full Text:

PDF

References

Ammar A. Al-Rousan (2010). Reduction of fuel consumption in gasoline engines by introducing HHO gas into intake manifold. International journal of hydrogen energy 35, 12930-12935

Asosiasi Industri Sepeda Motor Indonesia (AISI). (2014). Motorcycle Production Wholesales Domestic and Exports. Diperoleh pada 13 Januari 2016, dari http://www.aisi.or.id/statistic/

Badan Standardisasi Nasional. (2005). Emisi Gas Buang – Sumber Bergerak – Bagian 3: Cara Uji Kendaraan Bermotor Kategori L Pada Kondisi Idle (SNI 09-7118.3-2005). Jakarta: BSN.

De Silva, TS., Senevirathne, L., Warnasooriya, TD. (2015). HHO Generator – An Approach to Increase Fuel Efficiency in Spark Ignition Engines. European Journal of Advances in Engineering and Technology, 2 (4): 1-7. Diperoleh pada 15 Februari 2016, dari http://www.ejaet.com/PDF/2-4/EJAET-2-4-1-7.pdf.

Electrolyzer in a CI Engine working on Dual Fuel Mode. Energy Procedia 90, 209–216. http:// dx.doi.org/10.1016/j.egypro.2016.11.187

Esmail Khalife, et al. (2016). Impacts of additives on performance and emission characteristics of diesel engines during steady state operation. Progress in Energy and Combustion Science, 59, 32-78. http://dx.doi.org/10.1016/j.pecs.2016.10.001

Eunji Jang, Seung Wan Choi, Seok-Min Hong, Sangcheol Shin, Ki Bong Lee (2017). Development of a cost-effective CO2 adsorbent from petroleum coke via KOH activation. Applied Surface Science 429, 62–71. http:// dx.doi.org/10.1016/j.apsusc.2017.08.075

H.H. Masjuki, A.M. Ruhul , Nirendra N. Mustafi , M.A. Kalam , M.I. Arbab, I.M. Rizwanul Fattah. (2016). Study of production optimization and effect of hydroxyl gas on a CI engine performance and emission fueled with biodiesel blends. international journal of hydrogen energy 41, 14519-14528. http://dx.doi.org/10.1016/j.ijhydene.2016.05.273

Kementerian Energi dan Sumber Daya Mineral. (2008, 25 Agustus). Potensi Energi Baru Terbarukan (EBT) Indonesia. Diperoleh 23 Januari 2016, dari http://esdm.go.id/berita/umum/37-umum/1962-potensi-energi-baru-terbarukan-ebt-indonesia.html.

Kementerian Energi dan Sumber Daya Mineral. (2015). Handbook of Energy & Economic Statistics of Indonesia. Diperoleh pada 14 Februari 2016, dari http://esdm.go.id/publikasi/statistik/handbook.html.

Melfiana, E., Harto, A.W., & Agung, A. (2007). Pengaruh Variasi Temperatur Keluaran Molten Salt Reactor Terhadap Efisiensi Produksi Hidrogen dengan Sistem High Temperatur Electrolysis (HTE). Prosiding Seminar Nasional ke-13 Teknologi dan Keselamatan PLTN serta Fasilitas Nuklir, hlm. 107 – 112. Universitas Gajah Mada, Jakarta. Diperoleh 12 Januari 2016, dari https://www.academia.edu/1480827/Pengaruh_Variasi_ Temperatur_Keluaran_Molten_Salt_Reactor_TerhadapEfisiensiProduksi_Hidrogen_dengan_Sistem_High_Temperature_Electrolysis_HTE_.

Mohamed M. EL-Kassaby, Yehia A. Eldrainy , Mohamed E. Khidr, Kareem I. Khidr (2015). Effect of hydroxy (HHO) gas addition on gasoline engine performance and emissions. Alexandria Engineering Journal, 55, 243–251. http://dx.doi.org/10.1016/j.aej.2015.10.016

P. V. Manua, Anoop Sunilb, S. Jayarajc. (2016). Experimental Investigation using an On-Board Dry Cell

Sudirman, Urip. (2008). Hemat BBM dengan Air. Jakarta: Kawan Pustaka.

Sugiyono. (2013). Metode Penelitian Pendidikan (Pendekatan Kuantitatif, Kualitatif, dan R&D). Bandung: Alfabeta.

Tamer M. Ismaila, Khaled Ramzya, M.N. Abelwhabb, Basem E. Elnaghib, M. Abd El-Salamc, M.I. Ismaild. (2018). Performance of hybrid compression ignition engine using hydroxy (HHO) from dry cell. Energy Conversion and Management 155, 287–300. http://dx.doi.org/10.1016/j.enconman.2017.10.076

Yilmaz, A. C., & Aydin, K. (2010). Effect of hydroxy ( HHO ) gas addition on performance and exhaust emissions in compression ignition engines, international journal of hydrogen energy 35, 11366-11372 https://doi.org/10.1016/j.ijhydene.2010.07.040

Refbacks

  • There are currently no refbacks.