The Implementation of Decision Tree Classification Techniques to Predict the Duration of Students Completing the Thesis at PTIK FKIP UNS

Halim Perdana Kesuma, Dwi Maryono, Febri Liantoni

Abstract

This paper aims to determine the reasons why students take a long time in compiling their thesis. The slowness of students in compiling will have an impact on their graduation. This is a serious problem faced by educational institutions. Out of 328 students at PTIK FKIP UNS who took thesis credits, only 85 were able to graduate on time. Therefore, this study was conducted to identify the causes. The research data was taken from the alumnus class of 2012 to 2017. The data was processed using RapidMiner software. The technique used was the decision tree classification technique with the C4.5 algorithm, and to optimize the accuracy of the model, the Particle Swarm Optimization (PSO) algorithm was also added. This study got an accuracy rate of 76% and an AUC score of 0.733.

Full Text:

PDF

References

D. W. Hosmer, S. Lemeshow, & R. X. Sturdivant. Applied Logistic Regression, 3rd ed . John Wiley & Sons, Inc., 2013. https://doi.org/10.2307/2532419

E. Sabna & M. Muhardi. (2016). Penerapan Data Mining Untuk Memprediksi Prestasi Akademik Mahasiswa Berdasarkan Dosen, Motivasi, Kedisiplinan, Ekonomi, dan Hasil Belajar. Jurnal CoreIT: Jurnal Hasil Penelitian Ilmu Komputer Dan Teknologi Informasi. 2(2), pp. 41. https://doi.org/10.24014/coreit.v2i2.2392

G. A. Putri. (2020). Implementation of the C4.5 Algorithm to Predict Student Achievement at SMK Negeri 6 Surakarta. Indonesian Journal of Informatics Education (IJIE). [Online]. 4(2), pp. 51-61. Available: https://jurnal.uns.ac.id/ijie/article/view/47124/pdf

J.Berry, & S. G. Linoff, “Data Mining Techniques for Marketing, Sales, and Customer Relationship Management”, 2nd ed. Wiley Publishing, Inc., Indianapolis, Indiana, 2004.

J. R. Quinlan, “C4.5: Programs For Machine Learning”. Morgan Kaufmann Publishers, Inc., 1993.

Kusrini, & E. Luthfi, “Algoritma Data Mining”. Andi Offset. 2009. [Online]. Available: https://books.google.co.id/books?id=-Ojclag73O8C&printsec=frontcover&hl=id#v=onepage&q&f=false

Peraturan Rektor Universitas Sebelas Maret Nomor 31 Tahun 2020 Tentang Penyelenggaraan Dan Pengelolaan Program Sarjana, Universitas Sebelas Maret, 2020, Pasal 10.

S. Haryati, A. Sudarsono, & E. Suryana. (2015). Implementasi Data Mining Untuk Memprediksi Masa Studi Mahasiswa Menggunakan Algoritma C4.5 (Studi Kasus: Universitas Dehasen Bengkulu). Jurnal Media Infotama. 11(2), pp. 130–138.

SALINAN-Peraturan Menteri Pendidikan Dan Kebudayaan Republik Indonesia Nomor 3 Tahun 2020 Tentang Standar Nasional Pendidikan Tinggi, Kemdikbud, 2020, Pasal 5-6.

Sulistyanto. (2018, Aug). Penerapan C4.5 Berbasis Particle Swarm Optimization (PSO) dalam Memprediksi Siswa Lolos Seleksi Perguruan Tinggi. Seminar Nasional Teknologi dan Bisnis 2018, IIB DARMAJAYA Bandar Lampung. pp. 162-170.

U. Fayyad, P.-S. Gregory, & P. Smyth. (1996). Knowledge discovery and data mining: Towards a Unifying Framework. KDD’96: Proceedings of the Second International Conference on Knowledge Discovery and Data Mining, Data Mining General Overview, pp. 82–88. Available: https://www.aaai.org/Papers/KDD/1996/KDD96-014.pdf

Y.-J. Cho, H.-S. Lee, & C.-H. Jun. (2011). Optimization of Decision Tree for Classification Using a Particle Swarm. Industrial Engineering and Management Systems, 10(4), pp. 272–278. https://doi.org/10.7232/iems.2011.10.4.272

Refbacks

  • There are currently no refbacks.