DAMPAK LIBERALISASI PERDAGANGAN TERHADAP PEREKONOMIAN INDONESIA
(Kasus Industri Gula)

Oleh:
Dr. Agustinus Suryantoro, M.S.
(Staff Pengajar Jurusan Ekonomi Pembangunan FE UNS)

A. Pendahuluan

Beberapa permasalahan yang timbul dan merugikan dari kebijakan industri substitusi impor ini antara lain produksi tidak efisien dan terbatasnya pasar (Urata, 1994:363-371), struktur industri yang sangat tergantung pada bahan mentah dan kapital yang diimpor, pertumbuhan ekspor yang rendah yang mengakibatkan kesulitan dalam neraca pembayaran, dan terjadinya
penyimpanan alokasi yang hebat (Bruton, 1989:290).

Perjanjian bilateral dilakukan oleh suatu negara dengan negara mitranya untuk mengurangi hambatan-hambatan perdagangan internasional antar kedua negara. Secara multilateral dilakukan dengan membentuk blok-blok perdagangan bebas dalam suatu kawasan, misalnya di negara-negara kawasan Atlantik utara, North Atlantic Free Trade Area (NAFTA), European Union (EU) di Eropa, MERCOSUR di Amerika Latin, AFTA di Asia Tenggara, APEC di Asia Pasific dan yang terakhir perjanjian perdagangan bebas antara ASEAN dan China (ACFTA).

Dalam liberalisasi perdagangan, tidak semua sektor dibuka untuk bersaing secara
bebas. Sektor pertanian seringkali dikecualikan dalam perjanjian liberalisasi perdagangan. APEC sendiri dalam program APEC Food System (Gilbert, Scollary dan Wahl, 2000) mempunyai tujuan: (1) menciptakan sistem pangan regional di mana konsumen mempunyai akses terhadap bahan pangan yang diinginkan (2) meningkatkan produktivitas sektor pangan melalui tersedianya kemajuan teknologi dan efisiensi penggunaan sumberdaya, (3) terjaminnya penawaran pangan melalui kerjasama dan saling ketergantungan dan (4) peningkatan pemberdayaan masyarakan-kat desa melalui kemajuan pembangunan infrastruktur dan akses keberlanjutan kesempatan kerja di luar pertanian dan industri.

Indonesia yang merupakan salah satu negara anggota AFTA, APEC dan WTO tidak bisa lepas dari kecenderungan liberalisasi perdagangan tersebut. Keterlibatan ini mengakibatkan Indonesia harus siap bersaing di pasar global, baik produk untuk pasar ekspor ataupun produk untuk pasar domestik.

B. Permasalahan

Industri gula Indonesia menghadapi berbagai masalah yang saling terkait, seperti penempatan gula sebagai salah satu kebutuhan pokok yang mengakibatkan harga dan tata niaganya dintervensi pemerintah, pelaku dalam industri gula begitu banyak dimana antara produsen bahan baku, pemroses bahan baku menjadi gula dan distribusinya merupakan lembaga yang terpisah. Juga inefisiensi baik pada tingkat usaha tani maupun pabrik masih terjadi, bias kebijakan pemerintah, serta distorsi perdagangan yang tinggi di pasar internasional. Sebagai akibatnya, produktivitas dan rendemen cenderung menurun, yang dalam jangka panjang akan mengancam keberadaan industri gula Indonesia.

C. Hasil Studi dan Kerangka Teoritis

1 Produksi Gula

Dengan asumsi tanaman padi merupakan produk yang bersaing dengan tebu, maka faktor produksi yang dimiliki oleh petani mempunyai alternatif untuk memproduksi kedua macam komoditi yang bersangkutan. Keterkaitan keduanya digambarkan dalam kurva kemungkinan produksi (Production Possibility Curve).

![Diagram Gula and Gabah](image)

Gambar 1. Kurva Kemungkinan Produksi

Dengan sejumlah faktor produksi yang dimilikinya, maka petani dapat memproduksi berbagai alternatif produksi maksimal pada kurva kemungkinan produksi. Kurva kemungkinan produksi tersebut dapat dirumuskan:
\[A^0 = f(QDGL, QGB) \]
\[\text{di mana:} \]
\[A^0 : \text{faktor produksi yang dimiliki petani (dalam hal ini areal)} \]
\[QDGL : \text{jumlah produksi gula} \]
\[QGB : \text{jumlah produksi gabah} \]

Pada kondisi keseimbangan, maka petani yang mempunyai faktor produksi tertentu akan memproduksi kombinasi produksi di mana *marginal rate of product transformation* (MRPT\(_{GL,GB} = \frac{dQ_G}{dQ_G} + \frac{dQ_G}{dQ_G} \) sama dengan rasio harga antara gula dan gabah (\(P_G/P_G\)). Atau dengan kata lain, *slope* dari kurva kemungkinan produksi sama dengan *slope* kurva *Iso-Revenue*, sehingga kombinasi optimum produksi tebu dan gabah tercapai pada \(\frac{dQ_G}{dQ_G} = \frac{P_G}{P_G} \). Oleh karenanya, penggunaan input (misalnya lahan) untuk memproduksi output misalnya gula (tebu) dapat dituliskan sebagai berikut:

\[QDGL = f(PDGL, PGB, PX) \]
\[\text{di mana,} \]
\[QDGL : \text{produksi gula} \]
\[PDGL : \text{harga provenve gula} \]
\[PGB : \text{harga gabah} \]
\[PX : \text{harga faktor produksi} \]

2. Permintaan Gula untuk Rumah

Tangga

Secara umum fungsi permintaan konsumen terhadap suatu barang diturunkan dari fungsi utilitas konsumen.

\[U(q_{1}, q_{2}, \ldots, q_{n}) \]

Konsumen berusaha untuk memaksimalkan utilitasnya dengan kendala anggaran yang dimilikinya (Silberberg, 1990: 299).
di mana \(q_1, q_2, \ldots, q_n \) merupakan barang-barang yang dikonsumsi dan \(U(q_1, q_2, \ldots, q_n) \) menunjukkan penilaian subyektif kepuasan atau utilitas terhadap konsumsi suatu barang. Konsumen dihadapkan pada pilihan tingkat konsumsi yang didasarkan pada kemampuannya yang ditunjukkan dengan kendala anggarannya,

\[
\Sigma p_i q_i = M
\]

di mana \(p_i \) merupakan harga barang, \(q_i \) adalah kuantitas dan \(M \) merupakan total anggaran pada satu periode. Maksimumkan

\[
U(q_1, q_2, \ldots, q_n)
\]

dengan kendala

\[
\Sigma p_i q_i = M
\]

Maksimisasi utilitasnya dilakukan dengan cara mengambil derivatif pertama dari fungsi Lagrange dan menamakannya dengan nol:

\[
L = U(q_1, q_2) + \lambda (M - p_1 q_1 - p_2 q_2)
\]

di mana \(\lambda \) merupakan multiplier Lagrange. Sehingga,

\[
L_1 = U_1(q_1, q_2) - \lambda p_1 = 0
\]

\[
L_2 = U_2(q_1, q_2) - \lambda p_2 = 0
\]

\[
L_\lambda = M - p_1 q_1 - p_2 q_2 = 0
\]

Syarat cukup untuk kondisi ke dua (sufficient second-order condition) untuk batasan positif determinan Hessian harus positif, atau

\[
D = \begin{vmatrix}
L_{11} & L_{12} & L_{1\lambda} \\
L_{12} & L_{11} & L_{2\lambda} \\
L_{1\lambda} & L_{2\lambda} & L_{\lambda\lambda}
\end{vmatrix} = \begin{vmatrix}
U_{11} & U_{12} - p_1 \\
U_{21} & U_{22} - p_2 \\
-p_1 & -p_2
\end{vmatrix} > 0
\]

Sehingga,

\[
q_1 = q_1(p_1, p_2, M)
\]

\[
q_2 = q_2(p_1, p_2, M)
\]

\[
\lambda = \lambda(p_1, p_2, M)
\]
merupakan solusi simultan dari sistem persamaan di atas yang menghasilkan fungsi permintaan barang. Dari persamaan di atas terlihat bahwa konsumsi/permintaan akan suatu barang merupakan fungsi dari harga barang itu sendiri, harga barang lain dan pendapatan. Fungsi permintaan ini dikenal dengan fungsi permintaan "Marshallian" (Silberberg, 1990: 309).

3. Permintaan Gula untuk Industri

Gula, di samping diminta untuk rumah tangga untuk dikonsumsi, juga diminta oleh sektor industri sebagai input untuk memproduksi output sektor industri. Industri meminta gula sebagai inputnya, sehingga permintaan input ini merupakan permintaan turunan dari permintaan outputnya. Permintaan input dapat diturunkan dari proses maksimisasi laba atau minimisasi biaya.

Perusahaan yang menggunakan input untuk memproduksi output akan berusaha untuk memaksimumkan labanya:

\[
\pi (x_1, x_2, ..., x_n) = p_q q(x_1, x_2, ..., x_n) - (p_{x_1} x_1 + p_{x_2} x_2 + ... + p_{x_n} x_n)
\]

(13)

di mana, \(\pi \) merupakan laba; \(x_1, x_2, ..., x_n \) adalah input yang digunakan, \(p_{x_1}, p_{x_2}, ..., p_{x_n} \) merupakan harga input dan \(p_q \) harga output serta \(q(x_1, x_2, ..., x_n) \) jumlah output yang diproduksi.

First Order Condition :

\[
\pi_{x_1} = p_q \cdot q_1 (x_1, x_2, ..., x_n) - p_{x_1} = 0
\]

\[
\pi_{x_2} = p_q \cdot q_2 (x_1, x_2, ..., x_n) - p_{x_2} = 0
\]

\[
\vdots
\]

\[
\pi_{x_n} = p_q \cdot q_n (x_1, x_2, ..., x_n) - p_{x_n} = 0
\]

atau

\[
p_q \cdot MP x_n = p_{x_n}
\]

Dari proses maksimisasi laba tersebut diperoleh jumlah input optimal yang akan digunakan, sehingga di sini permintaan input merupakan fungsi dari harga input, harga output dan tingkat produksi optimum (\(x_i^* = x_i^* (p_{x_1}, p_{x_2}, ..., p_{x_n}, p_q) \)).

4. Liberalisasi Perdagangan

Liberalisasi perdagangan gula akan berpengaruh terhadap produsen, konsumen
dan pemerintah serta dead weight loss. Dengan hilangnya proteksi yang berupa tarif akan berakibat pada produsen yang akan kehilangan surplus produsennya dan bagi konsumen justru akan bertambah surplus konsumennya. Bagi pemerintah akan kehilangan penerimaan dari tarif serta akan berakibat pada hilangnya dead weight loss. Dengan mengasumsikan tarifnya adalah tarif spesifik, maka besarnya net surplus dapat dihitung dari gambar 2 dibawah:

Gambar 2 Efek Tarif Terhadap Harga dan Kuantitas

Dengan membandingkan fungsi permintaan, fungsi penawaran dengan tarif dan fungsi penawaran tanpa tarif, maka akan dapat dihitung surplus konsumen, surplus produsen, dead weight loss serta penerimaan pemerintah. Surplus konsumen yang bertambah dapat dihitung:

\[\text{Surplus Konsumen} = \left(\int_{Q_t} P_D(Q_t) - (P_{ent} \cdot Q_{ent}) \right) - \left(\int_{Q_t} P_D(Q_t) - (P_{ent} \cdot Q_{ent}) \right) \] \hspace{1cm} (16)

\[\text{Surplus Produsen} = \left((P_{ent} \cdot Q_{ent}) - \int_{Q_t} P_S(Q_t) \right) - \left((P_{ent} \cdot Q_{ent}) - \int_{Q_t} P_S(Q_t) \right) \] \hspace{1cm} (17)

\[\text{Dead weight loss} = \int_{Q_t} P_S(Q_t) - \left((Q_{ent} - Q_{et}) \cdot P_{nt} \right) \] \hspace{1cm} (18)
Penerimaan pemerintah = \(t \) Qet

Keterangan:
- \(Pd(Qt) \) adalah fungsi permintaan gula
- \(Ps\) (Qt) adalah fungsi penawaran dengan tarif.
- \(Ps\) (Qnt) adalah fungsi penawaran tanpa tarif.
- Qet adalah kuatitas keseimbangan dengan tarif
- Qent adalah kuatitas keseimbangan tanpa tarif
- Pet adalah harga keseimbangan dengan tarif
- Pent adalah harga keseimbangan tanpa tarif

Model Empiris Industri Gula dalam Liberalisasi Perdagangan

Dari landasan teoritis dan studi empiris yang telah dilakukan mengenai variabel-variabel yang berkaitan, maka dirumuskan model empiris untuk kasus Indonesia. Model persamaan strukturalnya adalah:

\[
QDGL_t = a_0 + a_1 PDGL_t \hat{a} + a_2 PGB_t + a_3 PPPK_t
\]

\[
PDGL_t = b_0 + b_1 PMGL_t \hat{b}
\]

\[
PMGL_t = c_0 + c_1 QMGL_t + c_2 PWGL_t + c_3 TRFT_t + c_4 KURSt
\]

\[
QMGL_t = d_0 + d_1 PDGL_t + d_2 PWGL_t
\]

\[
DQGL_t = e_0 + e_1 PDGL_t \hat{e} + e_2 POP_t + e_3 ICP_t + e_4 R_t + e_5 POUT_t
\]

IDENTITAS:
- \(QGL = REN \times QTB \)
- \(SGL = QGL + MGL \)
- \(DQGL = DRT + DIN \)

KESEIMBANGAN,
- \(SGL = DQGL \)

Persamaan struktural di atas merupakan persamaan simultan yang akan diestimasi dengan menggunakan metode kuadrat terkecil dua langkah (Two Stage Least Square / 2SLS) untuk memperoleh parameter yang tidak bias (unbiased estimator). Pada model persamaan simultan, penggunaan metode Ordinary
Least Square untuk mengestimasi persamaan simultan akan diperoleh parameter yang bias (parameter yang diestimasi tidak sama dengan parameter sebenarnya). Kon-disi ini dinamakan bias persamaan simultan (Gujarati, 2003: 727) di mana estimator dari OLS tidak konsisten.

Metode ini mempunyai sifat-sifat (Gujarati, 2003: 773-774):

1. Dapat diaplikasikan pada persamaan individu tanpa harus memperhitungkan persamaan lain dalam sistem persamaan. Metode ini dapat digunakan untuk memecahkan model ekonometri yang mencakup persamaan yang banyak secara ekonomis.

2. Tidak seperti metode Indirect Least Square (ILS), metode 2SLS hanya menghasilkan satu nilai parameter yang diestimasi.

3. Mudah diaplikasikan.

4. Metode ini juga bisa diaplikasikan pada persamaan yang teridentifikasi secara tepat (exactly identified).

5. Jika nilai R^2 dalam persamaan reduced tinggi, maka metode 2SLS akan mendekati metode Ordinary Least Square (OLS).

Langkah pertama, regres variabel-variabel endogen dengan seluruh variabel eksogen, sehingga:

\[
QDGL_t = \alpha_0 + \alpha_1 PGB_t + \alpha_2 PPPK_t + \alpha_3 PWGL_t + \alpha_4 TRF_t + \alpha_5 KURS_t + \alpha_6 POP_t + \alpha_7 GDP_t + \alpha_8 R_t + \alpha_9 POUT_t
\]

\[
PDL_t = \gamma_0 + \gamma_1 PGB_t + \gamma_2 PPPK_t + \gamma_3 PWGL_t + \gamma_4 TRF_t + \gamma_5 KURS_t + \gamma_6 POP_t + \gamma_7 GSP_t + \gamma_8 R_t + \gamma_9 POUT_t
\]

\[
PMGL_t = \delta_0 + \delta_1 PGB_t + \delta_2 PPPK_t + \delta_3 PWGL_t + \delta_4 TRF_t + \delta_5 KURS_t + \delta_6 POP_t + \delta_7 GDP_t + \delta_8 R_t + \delta_9 POUT_t
\]

\[
QMGL_t = \theta_0 + \theta_1 PGB_t + \theta_2 PPPK_t + \theta_3 PWGL_t + \theta_4 TRF_t + \theta_5 KURS_t + \theta_6 POP_t + \theta_7 GDP_t + \theta_8 R_t + \theta_9 POUT_t
\]

\[
DQGL_t = \lambda_0 + \lambda_1 PGB_t + \lambda_2 PPPK_t + \lambda_3 PWGL_t + \lambda_4 TRF_t + \lambda_5 KURS_t + \lambda_6 POP_t + \lambda_7 GDP_t + \lambda_8 R_t + \lambda_9 POUT_t
\]
\[
\begin{align*}
QDGL_t &= a_0 + a_1 PDGL_t + a_2 PGB_t + a_3 PPPK_t \\
PDGL_t &= b_0 + b_1 PMGL_t \\
PMGL_t &= c_0 + c_1 QMGL_t + c_2 PWGL_t + c_3 TRF_t + c_4 KURS_t \\
QMGL_t &= d_0 + d_1 PARPDPW_t \\
DQGL_t &= e_0 + e_1 PDGL_t + e_2 POP_t + e_3 GDP_t + e_4 R_t + e_5 POUT_t
\end{align*}
\]

Keterangan:
- \(QDGL_t\) : produksi gula
- \(AGL_t\) : areal tanaman
- \(QTB_t\) : produksi tebu
- \(REN_t\) : rendemen
- \(PDGL_t\) : harga gula domestik
- \(PGB_t\) : harga gabah
- \(PPPK_t\) : harga input pupuk
- \(QMGL_t\) : kuantitas impor gula
- \(PMGL_t\) : harga gula impor
- \(PWGL_t\) : harga gula dunia
- \(TRF_t\) : tarif impor gula
- \(KURS_t\) : kurs dollar terhadap rupiah
- \(SGL_t\) : penawaran domestik gula
- \(QDGL_t\) : produksi gula domestik
- \(DRT_t\) : permintaan gula untuk rumah tangga
- \(POP_t\) : jumlah penduduk
- \(GDP_t\) : pendapatan masyarakat
- \(DIN_t\) : permintaan gula untuk industri
- \(R_t\) : tingkat suku bunga
- \(POUT_t\) : harga output industri makanan dan minuman

Menurut Insuwindro (1999: 2) ECM memiliki kemampuan menganalisis fenomena ekonomi jangka pendek dan jangka panjang dan mengkaji konsisten tidaknya model empirik dengan teori ekonomi, serta dalam usaha mencari pemecahan terhadap persoalan variabel \(time \ series\) yang tidak stationer (non stationary) dan regresi lancung (spurious regression) atau korelasi lancung (spurious correlation) dalam analisis ekonometrika. Selain itu, ECM dapat pula dipakai untuk menghadapi adanya ketidak seimbangan (disequilibrium) di mana yang diinginkan oleh pelaku ekonomi tidak sama dengan kenyataan yang terjadi; oleh karena itu
perlu dilakukan penyesuaian. Dengan menggunakan ECM, dapat pula dianalisis secara empirik apakah model yang dihasilkan sesuai dengan teori atau tidak.

Penurunan Model ECM Industri Gula Indonesia

Produser diasumsikan memproduksi barang dan harga input yang sama untuk mencapai keuntungan yang maksimum (biaya yang minimum) (Sugiyanto, 1992: 51). Sedangkan semua konsumen juga diasumsikan bertujuan untuk memperoleh utilitas yang maksimum.

Produksi gula yang optimum merupakan fungsi dari harga gula domestik (PDGL), harga gabah (PGB) selaku komoditi alternatif dalam pemanfaatan sumberdaya yang dimiliki petani dan harga input (PPPK).

\[
QDG_{t}^* = a_0 + a_1 PDGL_t + a_2 PGB_t + a_3 PPPK_t
\]

(28)

di mana \(QDG_t^*\) merupakan produksi gula yang optimum, diharapkan atau long run.

Dengan adanya informasi yang tidak sempurna, shock dan faktor rigiditas yang lain, maka kondisi \(QDG_t^*\) tidak dapat dicapai pada tiap periode. Ketika produksi aktual tidak sama dengan produksi optimum, akan timbul biaya ketidakseimbangan \(C_1\) dan biaya penyesuaian \(C_2\).

\[
C_t = c_1 (QDG_{t} - QDG_{t}^*)^2 + c_2 [(1 - B) (QDG_{t} - j_t Z_t)]^2
\]

(29)

\(QDG_t\) : produksi gula aktual

\(Z_t\) : variabel independen

\(c_1 (QDG_{t} - QDG_{t}^*)\) : biaya ketidak seimbangan

\(c_2 [(1 - B) (QDG_{t} - j_t Z_t)]\) : biaya penyesuaian

\(B\) : backward lag operator / t - 1

Dengan mangasumsikan bahwa produsen akan berusaha untuk
meminimalkan biaya total, minimisasi persamaan (29) terhadap Q_t diperoleh,
biaya dilakukan dengan menderivasi

\[Q_t = c (QDGL_t^* + (1 - c) (1-B) Z_t) \]

di mana $c = c_1 / c_1 + c_2$

Dengan mensubstitusikan persamaan (28) dalam persamaan (30) akan diperoleh persamaan :

\[Q_t = (c a_0 + a_1 PDGL_t + a_2 PGB_t + a_3 PPPK_t) + (1-c) QDGL_{t-1} + (1-c) (1-B) PDGL_t \]

\[+ (1-c) (1-B) PGB_t + (1-c) (1-B) PPPK_t \]

Bentuk umum dari persamaan (3.13) di atas dapat ditulis sebagai persamaan auto regressive distributed lag, AD (1,1) yang berbentuk (Sugiyanto, 1992: 52) :

\[QDGL_t = \alpha_0 + \alpha_1 PDGL_t + \alpha_2 PGB_t + \alpha_3 PPPK_t + \alpha_4 QDGL_{t-1} + \alpha_5 PDGL_{t-1} \]

\[+ \alpha_6 PGB_{t-1} + \alpha_7 PPPK_{t-1} + \nu_t \]

di mana,

\[\alpha_0 = c a_0 \]
\[\alpha_1 = c a_1 + (1-c) \]
\[\alpha_2 = c a_2 + (1-c) \]
\[\alpha_3 = c a_3 + (1-c) \]
\[\alpha_4 = (1-c) \]
\[\alpha_5 = - (1-c) \]
\[\alpha_6 = - (1-c) \]
\[\alpha_7 = - (1-c) \]

\[\nu_t : \text{variable gangguan} \]

Persamaan (33) merupakan persamaan yang lebih umum dari persamaan model penyesuaian parsial (partial adjustment model / PAM) dengan melakukan restriksi $\alpha_5 = \alpha_6 = \alpha_7 = 0$. Persamaan (33) dapat ditulis sebagai model koreksi kesalahan (error correction model / ECM) untuk memperoleh elastisitas jangka
pendek dari produksi gula dan untuk regresi lancung (spurious) (Sugiyanto, 1992: 53), menghindari regresi lancung.

\[\Delta Q_t = \alpha_0 + \alpha_1 \Delta PDGL_t + \alpha_2 \Delta PGB_t + \alpha_3 \Delta PPPK_t + \alpha_4 (QDGL_{t-1} - a_0 - a_1 PDGL_{t-1} + a_2 PGB_{t-1} + a_3 PPPK_{t-1}) + \nu_t \]

(34)

Bagian belakang persamaan (34) merupakan elasititas jangka pendek dan parameter \(\beta_i \) merupakan parameter elasititas jangka panjang. Dengan cara yang sama, maka diperoleh persamaan-persamaan sebagai berikut:

Persamaan harga gula domestik:

\[\Delta PDGL_t = \beta_0 + \beta_1 \Delta MGL_t + \beta_2 (PDGL_{t-1} - b_0 - b_1 PMGL_t) \]

(35)

Persamaan harga impor:

\[\Delta PMGL_t = \gamma_0 + \gamma_1 \Delta MGL_t + \gamma_2 \Delta PWGL_t + \gamma_3 \Delta TRF_t + \gamma_4 \Delta KURSt + \gamma_5 \Delta PMGL_{t-1} + \gamma_6 (PMGL_{t-1} - c_0 - c_1 MGL_{t-1} - c_2 PWGL_{t-1} - c_3 TRF_{t-1} - c_4 KURS_{t-1}) \]

(36)

Persamaan kuatitas impor:

\[\Delta QMGL_t = \delta_0 + \delta_1 \Delta PDGL_t + \delta_2 \Delta PWGL_t + \delta_3 (QMGL_t - d_0 - d_1 PDGL_{t-1} + d_2 PWGL_{t-1}) \]

(37)

Persamaan permintaan gula:

\[\Delta QGGL_t = \psi_0 + \psi_1 \Delta PDGL_t + \psi_2 \Delta POP_t + \psi_3 \Delta GDP_t + \psi_4 \Delta Rt + \psi_5 \Delta POP_{t-1} + \psi_6 (DQGL_{t-1} - e_0 + e_1 PDGL_{t-1} + e_2 POP_{t-1} + e_3 ICP_t) \]

(38)

Dari persamaan (3.15) sampai (3.19) diperoleh respon jangka pendek dan respon jangka panjang atas perubahan variabel yang mempengaruhi sebagai berikut:

1. Respon jangka pendek perubahan nilai variabel yang mempengaruhi tercermin dalam koefisien
α, β, γ, δ, ψ untuk masing-masing variabel pada tiap-tiap persamaan.

2. Respon jangka panjang tercermin dalam koefisien \(a, b, c, d, e \) untuk masing-masing variabel.

E. Simulasi Liberalisasi Perdagangan dalam Industri Gula

1. Model yang Digunakan untuk

\[
\Delta QDGL_t = 0,05661 + 0,39575 \Delta LPDGL_t - 0,12985 \Delta PGB_t - 0,57325 \Delta PPPK_t + 0,000385 \Delta CLQDGL_t - 1 \\
\Delta LPDGL_t = -0,070405 + 0,08460 \Delta PPMGL_t^-^+^-^0^0^-^0^0^0^0^-^0^0^-^0^0^-^0^0^0^0^-^0^0-
Turunnya harga gula impor sebesar 20% akan direspon secara paralel oleh harga gula domestik yang akan turun sebesar 1,692% (Rp. 98,98) dalam jangka pendek dan 21,49% atau Rp. 1275,35 dalam jangka panjang. Turunnya harga domestik akan direspon secara berbeda oleh konsumen dan produsen. Bagi produsen turunnya harga gula domestik akan direspon secara negative dengan menurunnya produksi sebesar -0,67% (870,492 ribu ton) untuk jangka pendek dan untuk jangka panjang produksi akan menurun dengan – 21,50% (279,52 ribu ton).

Potensi penerimaan peme-rintah yang hilang sebesar Rp. 6,6401 milyar dalam jangka pendek dan Rp. 190,6926 milyar dalam jangka panjang. Perubahan nilai variabel variabel tersebut membutuhkan waktu. Hal ini mengingat berlakunya kebijakan tidak langsung dapat diimplementasikan seketika, namun memerlukan waktu.

b. Dampak Kebijakan Proteksi pada Industri Gula

Kebijakan proteksi dilakukan dengan menambah beban tarif pada gula impor sebesar 30%. Dengan kenaikan tarif sebesar 30% akan berakibat pada kenaikan harga impor sebesar 30%. Dan kenaikan harga impor ini akan mampengaruhi harga domestik, produksi, konsumsi, penerimaan pemerintah.

Demikian pula dengan produksi gula akan meningkat sebesar 1,00% (13,06 ribu ton) dalam jangka pendek dan dalam jangka panjang sebesar 32,25% (419,28 ribu ton). Dan akibat dari kenaikan harga gula tersebut, konsumsi akan turun dengan 2,27% atau 14,360 ribu ton untuk jangka pendek dan turun 0,59% atau 3,84 ribu ton.

Dengan pengenaan tarif pada gula impor, maka masyarakat akan mengalami kerugian yang tidak tergantikan yang berupa naiknya dead weight loss yang besarnya mencapai Rp. 0,9693 milyar dalam jangka pendek dan Rp.395,3956 milyar untuk jangka panjang. Kerugian karena kenaikan tarif impor ini tidak tergantikan dan akan ditanggung oleh masyarakat. Secara eksplisit besarnya kerugian tidak tergantikan ini merupakan selisih antara hilang/berkurangnya surplus konsumen dikurangi dengan bertambahnya surplus
produsen dan penerimaan pemerintah. Hilangnya surplus konsumen ini tidak sebanding dengan bertambahnya surplus produsen dan naiknya penerimaan pemerintah.

c. Kebijakan Penentuan Harga Dasar Gabah

Kebijakan penentuan harga dasar gabah merupakan salah satu kebijakan pemerintah di sektor pertanian untuk membantu petani padi. Petal, dalam hal ini petani padi, akan selalu dihadapkan pada kondisi kemerdesotan harga produknya ketika erjadi panen. Apalagi masa panen selalu terjadi secara bersamaan sehingga produk akan berlimpah pada musim panen. Dengan adanya penawaran yang berlimpah di satu sisi dan permintaan relatif tidak berubah, maka akan terjadi penurunan harga produksi pertanian.

Dengan adanya kebijakan penentuan harga dasar gabah, maka petani akan terangsang untuk memproduksi padi. Dengan adanya rangsangan bagi petani untuk menanam padi, maka tanaman tebu sebagai bahan baku gula menjadi berkurang karena lahannya akan digunakan untuk menanam tanaman padi.

Dengan scenario adanya kebijakan menaikkan harga dasar gabah sebesar 20%, maka ini akan menurunkan produksi gula sebesar 2,60% atau setara dengan 3,3761 ribu ton gula dalam jangka pendek dan dalam jangka panjang produksi gula akan turun 16,74% atau 21,7620 ribu ton gula.

c. Kebijakan Subsidi Input Pupuk

Kebijakan subsidi input dalam produk pertanian sudah banyak dilakukan oleh banyak negara. Ini dilakukan untuk menurunkan biaya produksi produk pertanian. Dengan turunnya biaya produksi, maka produk pertanian dapat dijual dengan harga lebih murah.

Kebijakan menaikkan subsidi input, dalam hal ini subsidi pupuk, akan berpengaruh terhadap produksi gula nasional. Skenario pemberian subsidi pupuk sebesar 20% berarti harga pupuk akan turun juga dengan 20%. Dengan turunnya harga pupuk sebagai input yang cukup penting dalam produksi gula, maka produksi akan mengalami kenaikan produksi sebesar 11,47% atau 14,90 ribu ton dalam jangka pendek dan dalam jangka panjang justru akan meningkat dengan 6,33% atau 8,2279 ribu ton.
d. Kombinasi Kebijakan Proteksi dan Penentuan Harga Dasar Gabah

Skenario kebijakan dalam industri gula seperti yang telah dijelaskan di atas merupakan scenario kebijakan yang berdiri sendiri atau dilakukan tanpa adanya kebijakan lain. Dalam skenario kombinasi kebijakan proteksi dan penentuan harga dasar gabah terjadi pengaruh yang kontradiktif. Di satu sisi kebijakan proteksi akan mengakibatkan kenaikan dalam produksi, namun di sisi lain kebijakan penentuan kenaikan harga dasar gabah berpengaruh negative terhadap produksi gula.

Dari hasil simulasi kombinasi kebijakan proteksi yang digabung dengan kebijakan menaikkan harga dasar gabah terlihat bahwa peningkatan produksi tidak sebesar kalau tidak dibarengi dengan menaikkan harga dasar gabah. Kombinasi kebijakan ini akan mengakibatkan kenaikan dalam produksi sebesar 1,59% (20,7036 ribu ton) untuk jangka pendek dan 30,58% (397,7527 ribu ton) dalam jangka panjang. Untuk penurunan tingkat konsumsi sama dengan kebijakan proteksi seperti telah diuraikan di atas yaitu turun dengan 3,40% (14,630 ribu ton) untuk jangka pendek dan 0,89% (3,8373 ribu ton).

e. Kombinasi Kebijakan Proteksi dan Subsidi Input Pupuk

Kebijakan kombinasi proteksi dan pemberian subsidi pupuk mempunyai pengaruh searah dan saling menguatkan. Kebijakan proteksi dan subsidi pupuk sama-sama berpengaruh terhadap peningkatan produksi.

f. Kombinasi Kebijakan Proteksi, Penentuan Harga Dasar Gabah
dan Subsidi Pupuk

Kombinasi kebijakan proteksi, menaikkan harga dasar gabah dan pemberian subsidi pupuk akan mengaitkan kenaikan dalam produksi sebesar 4,13% atau 53,73 ribu ton untuk jangka pendek dan untuk jangka panjang sebesar Rp. 302,57 ribu ton. Sedangkan konsumsi akan turun dengan 0,26% atau 11,12 ribu ton untuk jangka pendek dan turun 11,73% atau 504,40 ribu ton.

Dari sisi konsumen, konsumen akan mengurang konsumsi karena terjadinya kenaikan harga gula. Tingkat konsumsi dalam jangka pendek akan turun dengan 13,06% (56,162 ribu ton) dan 2,77% (11,9024 ribu ton) pada jangka panjang.

Akibat total dari perubahan dalam konsumsi, produksi dan impor gula karena hilangnya tarif dapat dihitung dengan melihat berkurangnya surplus produsen, hilangnya penerimaan pemerintah dan naiknya surplus konsumen serta hilangnya kerugian tak tergantikan (dead weight loss). Dengan membandingkan antara kerugian dan manfaat dari pelaku ekonomi pergulaan dapat dilihat dari pengaruh bersih (net effect)-nya.

g. Dampak Penentuan Harga Gula Domestik
F. Kesimpulan dan Implikasi

Kebijakan

1 Kesimpulan

a. Produksi Gula Domestik.

Harga gula domestik masih merupakan pertimbangan utama bagi produsen dalam memproduksi gula. Elastisitas harga jangka pendek tidak signifikan, tetapi elastisitas harga jangka panjangnya signifikan. Hal ini menunjukkan bahwa dalam jangka pendek produsen tidak merespon perubahan harga, tetapi direspon dalam jangka panjang. Keadaan ini dapat difahami bahwa jangka pendek dalam penelitian ini didasarkan pada waktu kuartal, sedangkan sifat tanaman tebu sebagai bahan baku gula mempunyai masa tanam kurang lebih berusia 1 tahun.

b. Harga Gula Domestik.

Persaingan harga antara gula domestik dan gula impor terjadi dalam jangka panjang. Hal ini ditunjukkan oleh elastisitas jangka pendek harga gula impor yang tidak signifikan dan elastisitas jangka panjangnya signifikan. Ini memberikan gambaran bahwa jika terjadi penurunan harga impor (yang berarti lebih rendah dari harga domestik) dalam jangka pendek tidak akan mengakibatkan penurunan harga domestik dan baru berpengaruh dalam jangka panjang. Meskipun elastisitasnya kecil (tidak elastis), namun terlihat bahwa penyesuaian harga domestik terhadap harga impor dalam jangka panjang begini besar.
c. Harga Impor Gula.

Dari hasil estimasi jangka pendek dan jangka panjang terlihat elastisitas tarif impor tidak signifikan secara statistik baik untuk jangka pendek maupun untuk jangka panjang. Ini memberikan gambaran bahwa baik dalam jangka pendek maupun jangka panjang tarif tidak berpengaruh terhadap harga impor gula. Seperti dijelaskan di depan, harga impor suatu komoditi di pasar internasional telah ditetapkan jauh sebelum komoditas tersebut dikirim di negara pengimpor.

d. Impor Gula Indonesia.

Dari hasil estimasi persamaan kuantitas impor terlihat bahwa koefisien elastisitas jangka pendek harga domestik dan harga dunia tidak signifikan; sedangkan dalam jangka panjang signifikan. Ini memberikan gambaran bahwa hubungan yang positif antara kenaikan harga domestik dengan kenaikan kuantitas impor menjelaskan bahwa harga gula domestik yang naik merupakan indikasi kekurangan stok gula dan ini direspon dengan naiknya kuantitas impor gula. Estimasi elastisitas harga gula dunia terhadap kuantitas impor gula untuk jangka pendek tidak signifikan, tetapi signifikan dalam jangka panjang. Hal ini dapat dijelaskan bahwa impor gula tidaklah disebabkan oleh faktor ekonomi semata, tetapi juga disebabkan oleh faktor lain seperti politik untuk menstabilikan harga domestik.

e. Permintaan Gula Domestik.

Permintaan gula masih dipengaruhi oleh harga gula domestik baik jangka pendek maupun jangka panjang. Koefisien elastisitas harga gula domestik jangka panjang yang lebih kecil dibandingkan dengan jangka pendek (lebih elastis) menunjukkan bahwa respon konsumen
terhadap perubahan harga gula cukup besar. Namun setelah berjalannya waktu, maka konsumen segera menyesuaikan konsumsinya yang tidak lagi terpengaruh pada kenaikan harga. Kondisi ini menunjukkan bahwa gula dalam jangka panjang merupakan barang kebutuhan pokok yang inelastik terhadap harga.

Dari hasil estimasi diperoleh nilai elastisitas harga output terhadap permintaan akan gula baik untuk untuk jangka pendek maupun jangka panjang tidak signifikan. Ini berarti bahwa permintaan gula untuk industri tidak dipengaruhi oleh harga dari output yang diproduksi. Demikian pula dengan elastisitas tingkat suku bunga terhadap permintaan akan bahan baku gula tidak signifikan. Ini menunjukkan bahwa biaya modal tidak responsif baik dalam jangka pendek maupun jangka panjang dalam merespon perubahan permintaan gula. Hal ini berarti bahwa dalam memproduksi bahan makanan yang berbahan dari gula tidak dipengaruhi biaya modal.

f. Kebijakan Liberalisasi dan Subsidi Input.
Kebijakan liberalisasi berarti hambatan tarif dan non tarif dihilangkan. Dari satu sisi kebijakan ini akan memberikan keuntungan bagi konsumen yang akan memperoleh harga gula yang lebih rendah (naiknya surplus konsumen). Namun di sisi lain akan terjadi kerugian baik yang dialami produsen dengan berkurangnya surplus produsen maupun pemerintah yang akan kehilangan penerimaan dari tarif. Subsidi input untuk produksi gula bagi petani akan mengakibatkan pada peningkatan keuntungan petani tanpa harus mengorbankan harga. Keuntungan yang semakin besar akan merangsang produsen untuk memproduksi gula lebih besar.

2. Implikasi Kebijakan

Berdasarkan hasil temuan-temuan di atas, maka dapat diambil kebijakan-kebijakan di bidang pergulaan dengan berorientasi pada suatu tujuan. Dengan melihat pasar gula dunia yang tidak menentu, maka tujuan dari kebijakan untuk menuju swasembada gula merupakan kebijakan yang harus segera dilakukan.

1. Mengingat bahwa konsumsi gula nasional belum dapat dipenuhi dari produksi domestik, maka konsumsi gula sangat tergantung pada impor. Dengan kondisi pasar gula internasional yang tidak menentu (volatile), kebijakan swasembada gula merupakan kebijakan
yang tidak dapat ditawar. Kebijakan swasembada gula ini dilakukan dengan cara memberikan harga gula domestik yang dapat memberikan rangsangan bagi produsen untuk menambah produksi gula. Penentuan harga yang merangang produsen ini dilakukan dengan cara menerapkan kebijakan yang protektif; yaitu mengenakan tarif pada gula impor.

4. Industri gula Indonesia bukan merupakan bentuk usaha tunggal yang mana produsen bahan baku (tebu) dan pemroses tebu menjadi gula berbeda; yaitu petani dan pabrik gula. Kondisi ini berimplikasi pada tujuan dan motif yang berbeda antara petani penanam tebu dan pabrik gula sebagai lembaga pemroses tebu menjadi gula. Pabrik-pabrik gula yang selama ini hanya sebagai lembaga pemroses tebu menjadi gula diberdayakan juga sebagai produsen gula dengan memberikan kesempatan yang lebih luas untuk ikut serta menanam tebu.

5. Faktor yang tidak kalah penting dalam usaha swasembada gula adalah lahan untuk tanaman tebu. Dengan perkembangan sektor di luar pertanian yang juga memerlukan lahan, maka usaha ekstensiifikasi juga perlu dikembangkan. Usaha ekstensiifikasi dapat dilakukan di Jawa dengan
memanfaatkan lahan-lahan kering/tegalan yang masih banyak ataupun di luar Jawa seperti yang pernah dilakukan (Prabowo, Prakosa dan Suryantoro, 1993).

Daftar Pustaka

Badan Ususan Logistik (1990), Tata Niaga dalam Perkembangan Industri Gula di Industri Gula, Gapegti, Jakarta.

Finance India, Vol X No.1, March 1996.

Sugiyanto, Catur (1992), Supply of Coconout and Cocconut Palm Oil in Indonesia, Jurnal Ekonomi dan Bisnis Indonesia, FE UGM, Yogyakarta.

