Potential of Trichocompost to Improve Organic Garlic Production in Fusarium Wilt–Endemic Fields in Tawangmangu, Central Java

Susilo Hambeg Poromarto, Supyani Supyani, Salim Widono, Dwiwiyati Nurul Septariani, Hadiwiyono Hadiwiyono, Argha Hyta Dimas Enggartiasto

Abstract


Garlic is a high-value commodity in Tawangmangu, one of its major production centers in Central Java. However, productivity in this region is seriously affected by Fusarium, the pathogen causes basal rot and wilting in the upper parts of the plant. The disease known as basal rot or Fusarium wilt, with the disease intensity in the field can exceeding  60%. Currently, chemical control remains the primary management strategies, which in organic farming, this practice is not acceptable. Therefore, environmentally friendly alternatives are required, such as using organic fertilizers, biological control agent like Trichoderma or combination. Trichoderma is also known as a cellulolytic microbe, which can enhance the composting process and produce Trichompost with improved quality. Field experiment results indicate that Trichocompost (TC) performs better compared to compost (C), Trichoderma (T), or untreated treatment. This findings suggest that garlic treated with Trichocompost and organic fertilizer show better growth with lower wilting intensity. Therefore, there is an indication that increased plant growth can reduce the intensity of Fusarium wilt in garlic.


Full Text:

PDF
rticle

References


  1. Hadiwiyono, Widono S. Relationship of soil environmental factors on intensity of basal rot of garlic in Tawangmangu. J Agrin. 2007;12(1):12–22.
  2. Lal D, Dev D, Kumari S, Pandey S, Aparna, Sharma N, et al. Fusarium wilt pandemic: current understanding and molecular perspectives. Funct Integr Genomics. 2024;24(41):1–17. doi:10.1007/s10142-024-01319-w.
  3. Hadiwiyono, Sari K, Poromarto SH. Yield losses caused by basal plate rot (Fusarium oxysporum f.sp. cepae) in some shallot varieties. J Sustain Agric. 2020;35(2):250–257.
  4. Ekwomadu TI, Mwanza M. Fusarium fungi pathogens: identification, adverse effects, disease management, and global food security. Agriculture. 2023;13(9):1810. doi:10.3390/agriculture13091810.
  5. Asad SA. Mechanisms of action and biocontrol potential of Trichoderma against fungal plant diseases: a review. Ecol Complex. 2022;49:100978. doi:10.1016/j.ecocom.2021.100978.
  6. Yang P. The gene task1 is involved in morphological development, mycoparasitism and antibiosis of Trichoderma asperellum. Biocontrol Sci Technol. 2017;27(5):620–635. doi:10.1080/09583157.2017.1318824.
  7. Benítez T, Rincón AM, Limón MC, Codón AC. Biocontrol mechanisms of Trichoderma strains. Int Microbiol. 2004;7:249–260.
  8. Amalia FD. Impact of bioameliorants and Trichoderma sp. on nutrient availability, plant immunity, and red chili productivity. J Pertan Tropik. 2025;12(2):21–28. doi:10.32734/jpt.v12i2.16905.
  9. Harman GE, Howell CR, Viterbo A, Chet I, Lorito M. Trichoderma species—opportunistic, avirulent plant symbionts. Nat Rev Microbiol. 2004;2(1):43–56. doi:10.1038/nrmicro797.
  10. Vinale F, Sivasithamparam K, Ghisalberti EL, Marra R, Woo SL, Lorito M. Trichoderma–plant–pathogen interactions. Soil Biol Biochem. 2008;40(1):1–10. doi:10.1016/j.soilbio.2007.07.002.
  11. Harman GE. Overview of mechanisms and uses of Trichoderma spp. Phytopathology. 2006;96(2):190–194. doi:10.1094/PHYTO-96-0190.
  12. Awal MA, Prismantoro D, Dwisandi RF, Chua KO, Mispan MS, Suhaimi NSM, et al. Biocontrol strategies of Trichoderma yunnanense TM10 against Fusarium oxysporum f.sp. cepae. Curr Res Microb Sci. 2025;9:100484. doi:10.1016/j.crmicr.2025.100484.
  13. Howell CR. Mechanisms employed by Trichoderma species in the biological control of plant diseases. Plant Dis. 2003;87(1):4–10. doi:10.1094/PDIS.2003.87.1.4.
  14. Mukherjee M, Mukherjee PK, Horwitz BA, Zachow C, Berg G, Zeilinger S. Advances in genetics of biological control. Indian J Microbiol. 2012;52(4):522–529. doi:10.1007/s12088-012-0308-5.
  15. Shoresh M, Harman GE, Mastouri F. Induced systemic resistance and plant responses to fungal biocontrol agents. Annu Rev Phytopathol. 2010;48:21–43. doi:10.1146/annurev-phyto-073009-114450.
  16. Pieterse CMJ, Zamioudis C, Berendsen RL, Weller DM, Van Wees SCM, Bakker PAHM. Induced systemic resistance by beneficial microbes. Annu Rev Phytopathol. 2014;52:347–375. doi:10.1146/annurev-phyto-082712-102340.
  17. Bellini A, Ferrocino I, Cucu MA, Pugliese M, Garibaldi A, Gullino ML. Compost treatment as a suppressive agent against Phytophthora capsici. Front Plant Sci. 2020;11:885. doi:10.3389/fpls.2020.00885.
  18. Noble R, Coventry E. Suppression of soil-borne plant diseases with composts: a review. Biocontrol Sci Technol. 2005;15(1):3–20. doi:10.1080/09583150400015904.
  19. Lima PC, Karimian P, Johnston E, Hartley CJ. Use of Trichoderma sp. for bioconversion of agro-industrial waste biomass. Fermentation. 2024;10(9):442. doi:10.3390/fermentation10090442.
  20. Amutuhaire H, Faigenboim-Doron A, Kraut-Cohen J, Friedman J, Cytryn E. Rhizosphere bacteria linked to compost suppressiveness toward Fusarium oxysporum. Environ Microbiome. 2025;20(1):16. doi:10.1186/s40793-025-00710-9.
  21. Heng JLS, Hamzah H. Effects of different parameters on cellulase production by Trichoderma harzianum TF2 using solid-state fermentation. Indones J Biotechnol. 2022;27(2):80–86. doi:10.22146/ijbiotech.66549.
  22. Amutuhaire H, Faigenboim-Doron A, Kraut-Cohen J, Friedman J, Cytryn E. Identifying rhizosphere bacteria linked to compost suppressiveness towards Fusarium oxysporum. Environ Microbiome. 2025;20(1):3–16. doi:10.1186/s40793-025-00710-9.
  23. Blaya J, Lloret E, Ros M, Pascual JA. Predictor parameters determining compost suppressiveness against Fusarium oxysporum and Phytophthora capsici. J Sci Food Agric. 2015;95(7):1482–1490. doi:10.1002/jsfa.6847.
  24. Agustin DR, Suprapti E, Wiyono. Influence of bacteria types and compost materials on composting results. J Rural Urban Community Stud. 2025;3(1):11–20. doi:10.36728/jrucs.v3i1.4667.
  25. Roy D, Gunri SK, Neogi S, Ali O, Sharma J, Bhadu A, et al. Effect of microbes in enhancing the composting process: a review. Int J Plant Soil Sci. 2022;34(23):630–641. doi:10.9734/ijpss/2022/v34i232469.
  26. Legawati L, Maarasyid C, Meldha Z, Liska S, Yolanda Y, Hendri YB, et al. Effectiveness of microorganisms for sustainable composting of oil palm empty fruit bunches. J Tek Ind Terintegrasi. 2025;8(3):3032–3039. doi:10.31004/jutin.v8i3.47603.
  27. Baehaki A, Muchtar R, Nurjasmi DR. Shallot (Allium ascalonicum L.) response to Trichocompost dosage. J Ilmiah Respati. 2019;10(1):28–34. doi:10.52643/jir.v10i1.356.
  28. Talukdar P, Mst SM, Masum MDI, Habibullah ABM, Bhuiyan MKA. Effect of Trichoderma-fortified compost on disease suppression, growth, and yield of chickpea. Int J Environ Agric Biotechnol. 2017;2(2):831–839. doi:10.22161/ijeab/2.2.34.
  29. Jin X, Zhou X, Wu F, Xiang W, Pan K. Biochar amendment suppresses Fusarium wilt and alters rhizosphere microbial composition of tomato. Agronomy. 2023;13(7):1811. doi:10.3390/agronomy13071811.
  30. Shree D, Deepasree A, Jose J, Nareshbhai GK, Ankireddypalli JK. Advancements in soil health and disease management through organic amendments. Int J Res Agron. 2024;7(8):680–683. doi:10.33545/2618060x.2024.v7.i8i.1400.
  31. Azizah FD, Advinda L. Fusarium wilt disease in banana plants and its management strategies: a review. J Biosense. 2025;8(2):204–216. doi:10.36526/biosense.v8i2.5197.
  32. Akter R, Bhuiyan MKA, Hossain MM, Rayhanur J, Bhuiyan MAB. Performance of Trichoderma-fortified composts in controlling collar rot of soybean. Fundam Appl Agric. 2019;4(3):943–949. doi:10.5455/faa.57557.
  33. Amaria W, Soesanthy F, Ferry Y. Effectiveness of Trichoderma sp. biofungicide with different carriers against white root disease. J TIDP. 2016;3(1):37–44. doi:10.21082/jtidp.v3n1.2016.p37-44.
  34. Ahmad Z, Ramadhani C, Angin DP, Fuskhah E. Effect of mineral-enriched compost tablets and Trichoderma sp. on shallot productivity and vitamin C content. J Tek Pert Andalas. 2020;24(1):37–42.
  35. Sutriana S, Ulpah S. Trichocompost dose test on peat composition for growth and yield of shallots. J Dinamika Pertanian. 2019;35(1):25–32. doi:10.25299/dp.2019.vol35(1).7683.
  36. Ichwan B, Irianto I, Eliyanti E, Zulkarnain Z, Nizoridan A, Pangestu YR. Growth and yield of shallot under different doses of cow manure-based Trichocompost. J Media Pertanian. 2022;7(1):31–37. doi:10.33087/jagro.v7i1.136.
  37. Kelen OER, Kasim M, Nguru EO. Dosage effect of cow manure Trichocompost and urea fertilizer on samhong mustard. Agrisa. 2019;13(2):219–232. doi:10.35508/agrisa.v13i2.17805.
  38. Purnomo EA, Sutrisno E, Sumiyati S. Effect of C/N ratio variation on compost production and K and P content from banana stems with cow manure. J Tek Lingkungan. 2017;6(2):1–1




DOI: https://doi.org/10.20961/jbb.v5i1.111410

Refbacks

  • There are currently no refbacks.


Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.



Print ISSN: 2775-5223
Online ISSN: 2808-3229
Website: https://jurnal.uns.ac.id/jbb
Email: jurnal.biotek.biodiv@mail.uns.ac.id
Published by: Universitas Sebelas Maret
Jl. Ir. Sutami Street, No. 36A, Surakarta, Jawa Tengah 57126