Analisis Perbandingan Metode Vector Space Model dan Weighted Tree Similarity dengan Cosine Similarity pada kasus Pencarian Informasi Pedoman Pengobatan Dasar di Puskesmas
Abstract
Sistem pencarian merupakan salah satu solusi yang dapat membantu dalam mendapatkan informasi yang diinginkan. Dengan sistem pencarian, proses pencarian informasi akan menjadi lebih efisien. Sistem pencarian informasi pada ebook pedoman pengobatan di puskesmas sangat dibutuhkan karena terdapat banyak data penyakit di dalamnya. Dalam mengembangkan sistem pencarian pada pedoman pengobatan di puskesmas, dapat memanfaatkan metode Vector Space Model (VSM) atau Weighted Tree Similarity (WTS). Penelitian ini membandingkan metode VSM dengan WTS untuk mendapatkan metode terbaik. Selain itu, ditambahkan algoritma Hamming Distance untuk mengetahui pengaruh eksekusi waktu sistem.
Penelitian ini menunjukkan bahwa WTS lebih baik dibandingkan VSM, hal ini dapat dilihat pada hasil pengujian, nilai precision pada WTS lebih baik dibandingkan VSM. Karena pada metode pencarian yang efektif adalah yang memberikan nilai ketepatan(precision) terbaik, meskipun nilai recall lebih rendah. Pada pengujian sistem, VSM menunjukkan hasil nilai rata – rata precision sebesar 44,82983 % dan recall sebesar 99,08165 %. Sedangkan pada WTS nilai rata – rata precision sebesar 52,17332% dan recall sebesar 98,61761%. Kemudian pada pengujian pakar menunjukkan precision WTS dengan rata – rata sebesar 46,675% dan recall sebesar 73,6111%. Sedangkan nilai precision VSM sebesar 33,6737% dan nilai recall sebesar 86,8056%.
Algoritma Hamming Distance sangat membantu dalam mempercepat eksekusi sistem. Pengaruh penggunaan algoritma Hamming Distance pada VSM memberikan hasil denganrata – rata waktu pengujian adalah 4,512 detik, sedangkan tanpa Hamming Distance adalah 9,185 detik. Kemudian Pada metode WTS dengan Hamming Distance memberikan hasil rata – rata dengan waktu pengujian adalah 6,042 detik, sedangkan tanpa Hamming Distance adalah 14,421 detikKeywords
Full Text:
PDF (Bahasa Indonesia)Refbacks
- There are currently no refbacks.