Assessment of Settlement Area Development in Jember Regency Area Based on Multitemporal LANDSAT 8 OLI-TIRS Data

Bowo Eko Cahyono, Inas Alfiyatul Umniyah

Abstract

Jember is a regency in the province of East Java-Indonesia, experiencing residential or settlement area growth because of increasing population as the main trigger for land use changing. Monitoring the development of settlement areas is important for regional and urban planning. Remote sensing technology provides fast and efective methods of classifying land use and land cover for regional aea, so monitoring the development of settelemnent area can be identified easily. This study aims to determine the classification of land use and analyse the distribution or evelopment of settlement area in the Jember District based on LANDSAT 8 OLI-TIRS data for the year of 2013, 2015, 2017, 2019 and 2021. The classification was conducted by supervised classification method using a random forest algorithm. The land use is divided into six classes namely vegetation, water body, settlement, bush grass, open land and paddy field. The results showed that settlement area continues to increase every year, meanwhile the area of vegetation, water bodies, bush grass, open land and paddy fields varies every year. The distribution of settlement area in each sub-district showed that the largest area of settlements occur in Ambulu sub-district with 1,447 ha in 2013, 4,064 ha in 2019, and 3,215 ha in 2021. The other years that are 2015 and 2017, Wuluhan sub-district was detected as the largest area of settlement which are 2,950 ha in 2015 and 2,291 ha in 2017. However, this number of settlement area distribution does not really reflect the level of housing density in each sub-district. Thus, the housing density was calcuated by dividing the settlement area to the sub-district area. It found that the highest settlement density in 2021 is located in Kaliwates sub-district with a percentage of 48%, followed by Sumbersari at 44%, Balung at 31%, Ambulu at 30%, and Umbulsari at 29%.

Keywords

remote sensing; settlements; random forest; land use; Jember

Full Text:

PDF

References

1 BPS. 2014. Jember Dalam Angka 2014. Jember

2 BPS. 2023. Jember Dalam Angka 2023. Jember

3 Farizki, M., & Anurogo, W. 2017. Pemetaan kualitas permukiman dengan menggunakan penginderaan jauh dan SIG di kecamatan Batam kota, Batam. Majalah Geografi Indonesia, 31(1), 39-45.

4 Widodo, S., & Pristianto, H. 2021. Prediksi Penggunaan Lahan Kota Sorong Menggunakan Citra Landsat Multi Waktu Dengan Metode CA-Markov. Jurnal Teknik Sipil: Rancang Bangun, 7(2), 62–70.

5 Cahyono, B. E., Febriawan, E. B., & Nugroho, A. T. 2019. Analisis Tutupan Lahan Menggunakan Metode Klasifikasi Tidak Terbimbing Citra Landsat di Sawahlunto, Sumatera Barat. Teknotan: Jurnal Industri Teknologi Pertanian, 13(1), 8-14.

6 Bashit, N., Prasetyo, Y., & Sukmono, A. 2019. Kajian Perkembangan Lahan Terbangun Kota Pekalongan Menggunakan Metode Urban Index (Ui). Elipsoida : Jurnal Geodesi Dan Geomatika, 2(2), 12–18.

7 Andiko, J. A., Duryat, & Darmawan, A. 2019. The Efficiency of Multisensor Images for Land Cover Mapping. Jurnal Sylva Lestari, 7(3), 342-349.

8 Hadi, B. S. 2019. Penginderaan Jauh: Pengantar ke Arah Pembelajaran Berpikir Spasial. Yogyakarta: UNY Press.

9 Wulder, M. A., Loveland, T. R., Roy, D. P., Crawford, C. J., Masek, J. G., Woodcock, C. E., . . . Zhu, Z. 2019. Current status of Landsat program, science, and applications. Remote Sensing of Environment, 225, 127-147.

10 Nurhayati, S., Rahman, A., & Dharmaji, D. 2020. Aplikasi Data Citra Satelit Landsat 8 OLI-TIRS dan Sistem Informasi Geografis Untuk Mengetahui Sebaran Kualitas Air di Waduk Riam Kanan Kecamatan Aranio, Kabupaten Banjar, Provinsi Kalimantan Selatan. AQUATIC Jurnal Manajemen Sumberdaya Perairan, 3(2), 81–99.

11 Al-Zuhairi, M., Nahas, F., Hussein, F., Pradhan, B., & Shariff, R. 2016. A refined classification approach by integrating Landsat Operational Land Imager (OLI) and RADARSAT-2 imagery for land-use and land-cover mapping in a tropical area. International Journal of Remote Sensing, 37, 2358-2375.

12 Barbosa, F. L. R., Guimarães, R. F., Junior, O. A. d. C., & Gomes, R. A. T. 2021. Land Use/Land Cover (LULC) classification based on SAR/Sentinel 1 image in Distrito Federal, Brazil. Sociedade & Natureza, 33, e55954.

13 Pareeth, S., Karimi, P., Shafiei, M., & De Fraiture, C. 2019. Mapping Agricultural Landuse Patterns from Time Series of Landsat 8 Using Random Forest Based Hierarchial Approach. Remote Sensing, 11(5).

14 Tan, K. C., Lim, H. S., MatJafri, M. Z., & Abdullah, K. 2010. Landsat data to evaluate urban expansion and determine land use/land cover changes in Penang Island, Malaysia. Environmental Earth Sciences, 60(7), 1509-1521.

15 Nengsih, W. 2019. Analisa Akurasi Permodelan Supervised dan Unsupervised Learning Menggunakan Data Mining. Sebatik, 23(2), 285–291.

16 Jin, Z., Shang, J., Zhu, Q., Ling, C., Xie, W., & Qiang, B. 2020. RFRSF: Employee Turnover Prediction Based on Random Forests and Survival Analysis. Online: Information Systems Engineering – WISE 2020, Chma.

17 Breiman, L. 2001. Random Forests. Machine Learning, 45(1), 5-32.

18 Adrian, M. R., Putra, M. P., Rafialdy, M. H., & Rakhmawati, N. A. 2021. Perbandingan Metode Klasifikasi Random Forest dan SVM Pada Analisis Sentimen PSBB. Jurnal Informatika Upgris, 7(1), 6–11.

19 Primajaya, A., & Sari, B. N. 2018. Random Forest Algorithm for Prediction of Precipitation. Indonesian Journal of Artificial Intelligence and Data Mining, 1(1), 27-31.

20 Papilaya, P. P. E. 2022. Aplikasi Google Earth Engine Dalam Menyediakan Citra Satelit Sumberbedaya Alam Bebas Awan. MAKILA, 16(2), 96-103.

21 Fikri, A. A., Darmawan, A., Hilmanto, R., Banuwa, I. S., Agustiono, A., & Agustiana, L. (2022). Pemanfaatan platform Google Earth Engine dalam Pemantauan Perubahan Tutupan Lahan di Taman Hutan Raya Wan Abdul Rachman. Journal of Forest Science Avicennia, 5(1), 46–57.

22 Lidiawati, I., Hasibuan, R. S., & Wijayanti, R. (2019). Perubahan Penutupan Lahan Kota Bogor. Talenta Conference Series: Agricultural and Natural Resources (ANR), 2(1), 44-51.

Refbacks

  • There are currently no refbacks.