Synthesis and Characterization of Adsorbent Magnetic Kaolin
Abstract
Kaolin as an adsorbent has difficulties separating it from the adsorbate solution because it requires centrifugation and precipitation methods, which require significant costs, time, and energy. Modification of kaolin with magnetite was carried out to increase the effectiveness of adsorption from the paracetamol solution. Kaolin-magnetite (KM) adsorbent was made by combining activated kaolin and Fe(III)/Fe(II) solution with a mole ratio of 2:1 using the coprecipitation method. The resulting activated kaolin, magnetite, and kaolin-magnetite were characterized using X-ray Fluorescence (XRF), X-ray Diffractometer (XRD), Fourier Transform Infrared (FTIR), Gas Sorption Analyzer (GSA), and Vibrating Sample Magnetometer (VSM). The presence of magnetite makes it easier to separate KM from the paracetamol solution, with 97.17% of KM being taken by the magnetic rod.
Keywords
Full Text:
PDFReferences
1 Muchlisyiyah, J., Laeliocattleya, R. A., & Putri, D. W. R. 2017. Kimia Fisik Pangan. UB Press, Malang.
2 Karelius, K., & Asi, N. B. 2018. Sintesis Dan Karakterisasi Komposit Magnetik Lempung Putih Asal Kalimantan Tengah Sebagai Adsorben Zat Warna Pada Limbah Cair. Jurnal Ilmiah Kanderang Tingang, 9(1), 51–66. https://doi.org/10.37304/jikt.v9i1.6
3 Fei, F., Gao, Z., Wu, H., Wurendaodi, W., Zhao, S., & Asuha, S. (2020). Facile solid-state synthesis of Fe3O4/kaolinite nanocomposites for enhanced dye adsorption. Journal of Solid-State Chemistry, 291, 121655. https://doi.org/10.1016/j.jssc.2020.121655
4 Sadiana, I. M., Fatah, A. H., & Karelius, K. 2017. Synthesis of Natural Clay Magnetite Composite as Adsorbent of Methylene Blue. Jurnal Sains dan Terapan Kimia, 11(2), 90–102. https://doi.org/10.20527/jstk.v11i2.4042
5 Mohagheghian, A., Pourmohseni, M., Vahidi-Kolur, R., Yang, J.-K., & Shirzad-Siboni, M. (2017). Application of kaolin-Fe3O4 nano-composite for the removal of azo dye from aqueous solutions. Desalination and Water Treatment, 58, 308–319. https://doi.org/10.5004/dwt.2017.0198
6 Izman, I. S., Johan, M. R., & Rusmin, R. 2022. Insight into Structural Features of Magnetic Kaolinite Nanocomposite and Its Potential for Methylene Blue Dye Removal from Aqueous Solution. Bulletin of Chemical Reaction Engineering & Catalysis, 17(1), 205–215. https://doi.org/10.9767/bcrec.17.1.12733.205-215
7 Hounfodji, J. W., Kanhounnon, W. G., Kpotin, G., Atohoun, G. S., Lainé, J., Foucaud, Y., & Badawi, M. (2021). Molecular insights on the adsorption of some pharmaceutical residues from wastewater on kaolinite surfaces. Chemical Engineering Journal, 407, 127176. https://doi.org/10.1016/j.cej.2020.127176
8 Koagouw, W., Stewart, N. A., & Ciocan, C. (2021). Long-term exposure of marine mussels to paracetamol: Is time a healer or a killer? Environmental Science and Pollution Research, 28(35), 48823–48836. https://doi.org/10.1007/s11356-021-14136-6
9 Wardi, E. S., Fendri, S. T. J., & Tanjung, L. 2019. Biosorpsi Senyawa Parasetamol yang Berpotensi Dalam Penanganan Limbah Obat. Jurnal Katalisator, 4(1), 53–60. https://doi.org/10.22216/jk.v4i1.3884
10 Koagouw, W., Arifin, Z., Olivier, G. W. J., & Ciocan, C. 2021. High concentrations of paracetamol in effluent dominated waters of Jakarta Bay, Indonesia. Marine Pollution Bulletin, 169, 1–6. https://doi.org/10.1016/j.marpolbul.2021.112558
11 Lolić, A., Paíga, P., Santos, L. H. M. L. M., Ramos, S., Correia, M., & Delerue-Matos, C. (2015). Assessment of non-steroidal anti-inflammatory and analgesic pharmaceuticals in seawaters of North of Portugal: Occurrence and environmental risk. Science of The Total Environment, 508, 240–250. https://doi.org/10.1016/j.scitotenv.2014.11.097
12 Wilkinson, J. L., Boxall, A. B. A., Kolpin, D. W., Leung, K. M. Y., Lai, R. W. S., Galbán- Malagón, C., … Teta, C. 2022. Pharmaceutical Pollution of The World’s Rivers. Proceedings of the National Academy of Sciences, 119(8), 1–10. https://doi.org/10.1073/pnas.2113947119
13 Elamin, M. R., Abdulkhair, B. Y., Algethami, F. K., & Khezami, L. 2021. Linear and nonlinear investigations for the adsorption of paracetamol and metformin from water on acid-treated clay. Scientific Reports, 11(1), 13606. https://doi.org/10.1038/s41598-021-93040-y
14 Kryuchkova, M., Batasheva, S., Akhatova, F., Babaev, V., Buzyurova, D., Vikulina, A., … Rozhina, E. (2021). Pharmaceuticals Removal by Adsorption with Montmorillonite Nanoclay. International Journal of Molecular Sciences, 22(18), 9670. https://doi.org/10.3390/ijms22189670
15 Vallova, S., Plevova, E., Smutna, K., Sokolova, B., Vaculikova, L., Valovicova, V., … Praus, P. (2022). Removal of analgesics from aqueous solutions onto montmorillonite KSF. Journal of Thermal Analysis and Calorimetry, 147(3), 1973–1981. https://doi.org/10.1007/s10973-021-10591-y
16 Zagabe Zabene, F., Koudjina, S., Mbaya Shikika, A., Goudjo, F., Egbeola Chitou, N., Wilfried Hounfodji, J., … Kewouyemi Chouti, W. (2024). Adsorption Behavior of Copper and Paracetamol Residues in Removal Strategy from Hospital Wastewater on Beninese Kaolinite Surface. Journal of Materials Physics and Chemistry, 12(2), 22–30. https://doi.org/10.12691/jmpc-12-2-1
17 Wahyuni, N., Zissis, G., & Mouloungui, Z. 2018. Prepublication: Photostability of Β-Carotene/Modified Kaolinite. Clays and Clay Minerals. https://doi.org/10.1346/CCMN.2018.064115
18 Ramadhy, W. F., Rahmalia, W., Usman, T., & Usman, T. 2020. Preparasi dan Karakterisasi Komposit TiO2/Metakaolin Teraktivasi KOH dalam Upaya Menurunkan Energi Celah Pita pada Anoda TiO2. POSITRON, 10(1), 19–26. https://doi.org/10.26418/positron.v10i1.36703
19 Magdy, A., Fouad, Y. O., Abdel-Aziz, M. H., & Konsowa, A. H. 2017. Synthesis and characterization of Fe3O4/kaolin magnetic nanocomposite and its application in wastewater Treatment. Journal of Industrial and Engineering Chemistry, 56, 299–311. https://doi.org/10.1016/j.jiec.2017.07.023
20 Alfiyani, H., Nurlina, N., & Wahyuni, N. 2022. Adsorpsi Anilin oleh Karbon Aktif Magnetik Cangkang Kelapa Sawit. ALCHEMY Jurnal Penelitian Kimia, 18(2), 130–139. https://doi.org/10.20961/alchemy.18.2.53647.130-139
21 Kloprogge, J. T. 2018. Spectroscopic Method in The Study of Kaolin Minerals and Their Modifications. Springer Nature Switzerland AG, Switzerland.
22 Mardiah, I. A., Sari, F. I. P., & Adisyahputra. 2022. Adsorption of Fe Metal in groundwater by magnetite-kaolinite. IOP Conference Series: Earth and Environmental Science, 1108(1), 1–7. https://doi.org/10.1088/1755-1315/1108/1/012065
23 Wahyuni, N., Imelda, H. S., Arryanto, Y., Sutarno., & Ya’Zupriadi. 2008. Hidrolisis Lempung dari Kecamatan Capkala dengan Variasi Konsentrasi Larutan Asam Klorida. Jurnal Zeolit Indonesia, 7(1), 12–21.
24 Mahmud, N., & Benamor, A. 2023. Magnetic Iron Oxide Kaolinite Nanocomposite for Effective Removal of Congo Red Dye: Adsorption, Kinetics, and Thermodynamics Studies. Water Conservation Science and Engineering, 8(1), 35. https://doi.org/10.1007/s41101-023- 00207-x
25 Sari, A. R., Fabiani, V. A., & Nurhadini, N. 2021. Efficiency of Zinc (II) Metal Ion Adsorption using Fe3O4/Clay Composite from Bangka. Stannum: Jurnal Sains dan Terapan Kimia, 3(1), 22–29. https://doi.org/10.33019/jstk.v3i1.2230
26 Qin, L., Yan, L., Chen, J., Liu, T., Yu, H., & Du, B. 2016. Enhanced Removal of Pb 2+, Cu 2+, and Cd2+ by Amino-Functionalized Magnetite/Kaolin Clay. Industrial & Engineering Chemistry Research, 55(27), 7344–7354. https://doi.org/10.1021/acs.iecr.6b00657
27 Fadillah, G., Yudha, S. P., Sagadevan, S., Fatimah, I., & Muraza, O. (2020). Magnetic iron oxide/clay nanocomposites for adsorption and catalytic oxidation in water treatment applications. Open Chemistry, 18(1), 1148–1166. https://doi.org/10.1515/chem-2020-0159
28 Adeyi, A. A., Abayomi, T. G., Purkait, M. K., & Mondal, P. 2019. Adsorptive Removal of Phosphate from Aqueous Solution by Magnetic-Supported Kaolinite: Characteristics, Isotherm and Kinetic Studies. Open Journal of Applied Sciences, 09(07), 544–563. https://doi.org/10.4236/ojapps.2019.97043
29 Lasheen, M. R., El-Sherif, I. Y., Sabry, D. Y., El-Wakeel, S. T., & El-Shahat, M. F. 2016. Adsorption of heavy metals from aqueous solution by magnetite nanoparticles and magnetite-kaolinite nanocomposite: Equilibrium, isotherm and kinetic study. Desalination and Water Treatment, 57(37), 17421–17429. https://doi.org/10.1080/19443994.2015.1085446
30 Mohammed, S. M. H. 2018. Characterization of Magnetite and Hematite Using Infrared Spectroscopy. Arab Journal of Science & Research Publishing, 2(1), 38–44. https://doi.org/10.26389/AJSRP.S110318
31 Dewi, R., Agusnar, H., Alfian, Z., & Tamrin. (2018). Characterization of technical kaolin using XRF, SEM, XRD, FTIR and its potentials as industrial raw materials. Journal of Physics: Conference Series, 1116, 042010. https://doi.org/10.1088/1742-6596/1116/4/042010
32 Mirbagheri, N. S., & Sabbaghi, S. (2018). A natural kaolin/γ-Fe2O3 composite as an efficient nano-adsorbent for removal of phenol from aqueous solutions. Microporous and Mesoporous Materials, 259, 134–141. https://doi.org/10.1016/j.micromeso.2017.10.007
33 Lankathilaka, K. P. W., De Silva, R. M., Mantilaka, M. M. M. G. P. G., & De Silva, K. M. N. 2021. Magnetite nanoparticles incorporated porous kaolin as a superior heavy metal sorbent for water purification. Groundwater for Sustainable Development, 14, 100606. https://doi.org/10.1016/j.gsd.2021.100606
Refbacks
- There are currently no refbacks.















