Optimizing Formalin Detection in Fish Using QCM Sensors with TOMAC Membrane Coatings for Product Quality Monitoring
Abstract
Keywords
Full Text:
PDFReferences
Y. Alfiko, D. Xie, R. T. Astuti, J. Wong, and L. Wang, “Insects as a feed ingredient for fish culture: Status and trends,” Aquac. Fish., vol. 7, no. 2, pp. 166–178, 2022, doi: 10.1016/j.aaf.2021.10.004. 2. Ò. Boronat et al., “Development of added-value culinary ingredients from fish waste: Fish bones and fish scales,” Int. J. Gastron. Food Sci., vol. 31, no. October 2022, pp. 0–6, 2023, doi: 10.1016/j.ijgfs.2022.100657. 3. M. Muthmainnah, M. F. Nashirudin, W. Sasmitaninghidayah, N. Chamidah, A. Mulyono, and I. Tazi, “THE DEVELOPMENT OF AN IOT-BASED AUTOMATED TEMPERATURE AND PH MONITORING SYSTEM TO ENHANCE THE MANAGEMENT OF GOURAMI FISH PONDS,” ARPN J. Eng. Appl. Sci., vol. 19, no. 5, pp. 294–300, 2024, doi: https://doi.org/10.59018/032443. 4. M. K. Alsmadi and I. Almarashdeh, “A survey on fish classification techniques,” J. King Saud Univ. - Comput. Inf. Sci., vol. 34, no. 5, pp. 1625–1638, 2022, doi: 10.1016/j.jksuci.2020.07.005. 5. V. Kandimalla, M. Richard, F. Smith, J. Quirion, L. Torgo, and C. Whidden, “Automated Detection, Classification and Counting of Fish in Fish Passages With Deep Learning,” Front. Mar. Sci., vol. 8, no. January, pp. 1–15, 2022, doi: 10.3389/fmars.2021.823173. 6. M. Nurilmala, H. Suryamarevita, H. Husein Hizbullah, A. M. Jacoeb, and Y. Ochiai, “Fish skin as a biomaterial for halal collagen and gelatin,” Saudi J. Biol. Sci., vol. 29, no. 2, pp. 1100–1110, 2022, doi: 10.1016/j.sjbs.2021.09.056. 7. F. Fadlisyah and M. Muhathir, “Performance Evaluation Of Variations Boosting Algorithms For Classifying Formalin Fish From Photos,” J. Informatics Telecommun. Eng., vol. 6, no. 2, pp. 621–629, 2023, doi: 10.31289/jite.v6i2.6614. 8. A. Sabilah et al., “The Effectiveness of Using Direct Sunlight on the Drying Process of Salted Fish Without Formalin,” Int. J. Nat. Sci. Eng., vol. 6, no. 1, pp. 14–20, 2022, doi: 10.23887/ijnse.v6i1.41471. 9. Misbah, M. Rivai, and F. Kurniawan, “Diabetes Detection Using Carbon Nanomaterial Coated QCM Gas Sensors and a Convolutional Neural Network through Urine Sample,” Int. J. Intell. Eng. Syst., vol. 16, no. 5, pp. 417–427, 2023, doi: 10.22266/ijies2023.1031.36. 10. P. Hampitak et al., “Protein interactions and conformations on graphene-based materials mapped using quartz-crystal microbalance with dissipation monitoring (QCM-D),” Carbon N. Y., vol. 165, pp. 317–327, 2020, doi: 10.1016/j.carbon.2020.04.093. 11. G. Rudolph-Schöpping, H. Schagerlöf, A. S. Jönsson, and F. Lipnizki, “Comparison of membrane fouling during ultrafiltration with adsorption studied by quartz crystal microbalance with dissipation monitoring (QCM-D),” J. Memb. Sci., vol. 672, no. November 2022, pp. 0–7, 2023, doi: 10.1016/j.memsci.2022.121313. 12. A. Budianto, A. Y. P. Wardoyo, Masruroh, and H. A. Dharmawan, “An Airborne Fungal Spore Mass Measurement System Based on Graphene Oxide Coated QCM,” Polish J. Environ. Stud., vol. 31, no. 4, pp. 3523–3529, 2022, doi: 10.15244/pjoes/147057. 13. D. Hao, C. Hu, J. Grant, A. Glidle, and D. R. S. Cumming, “Hybrid localized surface plasmon resonance and quartz crystal microbalance sensor for label free biosensing,” Biosens. Bioelectron., vol. 100, no. August 2017, pp. 23–27, 2018, doi: 10.1016/j.bios.2017.08.038. 14. J. Hu, X. Huang, S. Xue, G. Yesilbas, A. Knoll, and O. Schneider, “Measurement of the mass sensitivity of QCM with ring electrodes using electrodeposition,” Electrochem. commun., vol. 116, no. May, p. 106744, 2020, doi: 10.1016/j.elecom.2020.106744. 15. N. Liu et al., “Flexible hydrogel non-enzymatic QCM sensor for continuous glucose monitoring,” Biosens. Bioelectron. X, vol. 10, no. January, 2022, doi: 10.1016/j.biosx.2022.100110. 16. N. P. Putri, E. Suaebah, L. Rohmawati, D. J. D. Herry Santjojo, Masruroh, and S. P. Sakti, “Implications of the Electrodeposition Scan Rate on the Morphology of Polyaniline Layer and the Impedance of a QCM Sensor,” Trends Sci., vol. 20, no. 3, 2023, doi: 10.48048/tis.2023.6411. 17. T. Wasilewski, B. Szulczyński, D. Dobrzyniewski, W. Jakubaszek, J. Gębicki, and W. Kamysz, “Development and Assessment of Regeneration Methods for Peptide-Based QCM Biosensors in VOCs Analysis Applications,” Biosensors, vol. 12, no. 5, pp. 1–14, 2022, doi: 10.3390/bios12050309. 18. L. Feng, L. Feng, Q. Li, J. Cui, and J. Guo, “Sensitive Formaldehyde Detection with QCM Sensor Based on PAAm/MWCNTs and PVAm/MWCNTs†,” Acs Omega, vol. 6, no. 22, pp. 14004–14014, 2021, doi: https://doi.org/10.1021/acsomega.0c05987. 19. N. Horzum, D. Tascioglu, C. Ozbek, S. Okur, and M. M. Demir, “VOC sensors based on a metal oxide nanofibrous membrane/QCM system prepared by electrospinning,” New J. Chem., vol. 38, no. 12, pp. 5761–5768, 2014, doi: 10.1039/c4nj00884g. 20. Y. Yao, X. Huang, Q. Chen, Z. Zhang, and W. Ling, “High Sensitivity and High Stability QCM Humidity Sensors Based on Polydopamine Coated Cellulose Nanocrystals/Graphene Oxide Nanocomposite,” Nanomaterials, vol. 10, no. 11, pp. 1–12, 2020, doi: 10.3390/nano10112210. 21. N. Misawa et al., “Construction of a Biohybrid Odorant Sensor Using Biological Olfactory Receptors Embedded into Bilayer Lipid Membrane on a Chip,” Acs Sensors, vol. 4, no. 3, pp. 711–716, 2019, doi: 10.1021/acssensors.8b01615. 22. M. F. Adak, P. Lieberzeit, P. Jarujamrus, and N. Yumusak, “Classification of alcohols obtained by QCM sensors with different characteristics using ABC based neural network,” Eng. Sci. Technol. an Int. J., vol. 23, no. 3, pp. 463–469, 2020, doi: 10.1016/j.jestch.2019.06.011. 23. J. Y. Park, R. L. Pérez, C. E. Ayala, S. R. Vaughan, I. M. Warner, and J. W. Choi, “A Miniaturized Quartz Crystal Microbalance (QCM) Measurement Instrument Based on a Phase-Locked Loop Circuit,” Electron., vol. 11, no. 3, 2022, doi: 10.3390/electronics11030358. 24. T. M. Clausen et al., “Real-time and label free determination of ligand binding-kinetics to primary cancer tissue specimens; a novel tool for the assessment of biomarker targeting,” Sens. Bio-Sensing Res., vol. 9, pp. 23–30, 2016, doi: 10.1016/j.sbsr.2016.05.003. 25. W. A. A. Sudjarwo, M. T. Dobler, and P. A. Lieberzeit, “QCM-based assay designs for human serum albumin,” Anal. Bioanal. Chem., vol. 414, no. 1, pp. 731–741, 2022, doi: 10.1007/s00216-021-03771-0. 26. C. Tonda-Turo, I. Carmagnola, and G. Ciardelli, “Quartz crystal microbalance with dissipation monitoring: A powerful method to predict the in vivo behavior of bioengineered surfaces,” Front. Bioeng. Biotechnol., vol. 6, no. OCT, pp. 1–7, 2018, doi: 10.3389/fbioe.2018.00158. 27. M. Yılmaz, M. Bakhshpour, I. Göktürk, A. K. Pişkin, and A. Denizli, “Quartz crystal microbalance (Qcm) based biosensor functionalized by her2/neu antibody for breast cancer cell detection,” Chemosensors, vol. 9, no. 4, 2021, doi: 10.3390/chemosensors9040080. 28. L. Eddaif, A. Shaban, and J. Telegdi, “Sensitive detection of heavy metals ions based on the calixarene derivatives-modified piezoelectric resonators: a review,” Int. J. Environ. Anal. Chem., vol. 99, no. 9, pp. 824–853, 2019, doi: 10.1080/03067319.2019.1616708. 29. J. Hu, S. Xue, O. Schneider, G. Yesilbas, A. Knoll, and X. Huang, “Comparison of the absolute mass sensitivity of ring electrode QCM and standard QCM using electrodeposition,” Electrochem. commun., vol. 119, no. August, p. 106826, 2020, doi: 10.1016/j.elecom.2020.106826. 30. Q. Dou et al., “Ultrasensitive poly(boric acid) hydrogel-coated quartz crystal microbalance sensor by using uv pressing-assisted polymerization for saliva glucose monitoring,” ACS Appl. Mater. Interfaces, vol. 12, no. 30, pp. 34190–34197, 2020, doi: https://doi.org/10.1021/acsami.0c08229. 31. N. Liu et al., “Flexible hydrogel non-enzymatic QCM sensor for continuous glucose monitoring,” Biosens. Bioelectron. X, vol. 10, no. January, p. 100110, 2022, doi: 10.1016/j.biosx.2022.100110. 32. Y. Gao et al., “Hydrophobic deep eutectic solvent-based ionic conductive gels with highly stretchable, fatigue-resistant and adhesive performances for reliable flexible strain sensors,” J. Appl. Polym. Sci., vol. 140, no. 2, p. e53285, 2022, doi: 10.1002/app.53285. 33. A. Hernández-Fernández et al., “Polymeric Inclusion Membranes Based on Ionic Liquids for Selective Separation of Metal Ions,” Membranes (Basel)., vol. 13, no. 795, pp. 1–18, 2023, doi: 10.3390/membranes13090795.
Refbacks
- There are currently no refbacks.