Determining The Crystallite Size of TiO2/EG-Water XRD Data Using the Scherrer Equation
Abstract
X-ray diffraction (XRD) data and the Scherrer equation were utilized to analyze the crystallite Size of titanium dioxide (TiO2) in a solution of ethylene glycol (EG) and distilled water. The XRD analysis was conducted using a Rigaku Miniflex 600 instrument with an X-ray wavelength of approximately 0.15046 nm. The examination yielded the full-width half maximum (FWHM), which was subsequently examined using the Scherrer equation. This experiment employed TiO2 with a purity level of 99.8% and a crystal Size of 30 nm. The analysis revealed that the average crystallite Size of TiO2 in the sample is 19.45 nm, with the highest measurement at about 30.38 nm. The Spearman correlation equation was employed to validate the outcomes. The Spearman's correlation coefficient between the FWHM variable and the crystallite Size of TiO2 nanoparticles is -0.958. These findings shed light on the crystal structure of TiO2 under these conditions. These findings lend support to the use of TiO2 in a variety of nanotechnology applications. However, more research is needed to understand fully how crystallite-Size TiO2 nanoparticles work in different settings and to find the best ways to prepare samples, including understanding the specific phase and how it affects the stability of fluids. This research contributes significantly to the understanding of the properties of TiO2 in a solution of distilled water and EG, as well as to the characterization of nanomaterials, with particular emphasis on issue 9 of the SDGS Goal concerning industry, innovation, and infrastructure.
Keywords
Full Text:
PDFReferences
K. Anoop, J. Cox, and R. Sadr, “Thermal evaluation of nanofluids in heat exchangers,” Int. Commun. Heat Mass Transf., vol. 49, pp. 5–9, 2013, doi: 10.1016/j.icheatmasstransfer.2013.10.002. 2. A. Kaleru, S. Venkatesh, and N. Kumar, “Theoretical and numerical study of a shell and tube heat exchanger using 22% cut segmental baffle,” Heat Transf., vol. 51, no. 8, pp. 7805–7821, 2022, doi: 10.1002/htj.22667. 3. W. Ahmed et al., “Preparation, applications, stability and improved thermal characteristics of sonochemically synthesized nanosuspension using varying heat exchangers, a Review:,” J. Mol. Liq., vol. 387, no. July, p. 122665, 2023, doi: 10.1016/j.molliq.2023.122665. 4. N. Uekawa, N. Endo, K. Ishii, T. Kojima, and K. Kakegawa, “Characterization of titanium oxide nanoparticles obtained by hydrolysis reaction of ethylene glycol solution of alkoxide,” J. Nanotechnol., vol. 2012, 2012, doi: 10.1155/2012/102361. 5. L. Yang and Y. Hu, “Toward TiO2 Nanofluids—Part 2: Applications and Challenges,” Nanoscale Res. Lett., vol. 12, 2017, doi: 10.1186/s11671-017-2185-7. 6. S. M. Mirabedini and A. Kiamanesh, “The effect of micro and nano-sized particles on mechanical and adhesion properties of a clear polyester powder coating,” Prog. Org. Coatings, vol. 76, no. 11, pp. 1625–1632, 2013, doi: 10.1016/j.porgcoat.2013.07.009. 7. S. S. Al-Taweel and H. R. Saud, “New route for synthesis of pure anatase TiO2 nanoparticles via utrasound-assisted sol-gel method,” J. Chem. Pharm. Res., vol. 8, no. 2, pp. 620–626, 2016. 8. G. A. Dorofeev, A. N. Streletskii, I. V. Povstugar, A. V. Protasov, and E. P. Elsukov, “Determination of nanoparticle sizes by X-ray diffraction,” Colloid J., vol. 74, no. 6, pp. 675–685, 2012, doi: 10.1134/S1061933X12060051. 9. A. Monshi, M. R. Foroughi, and M. R. Monshi, “Modified Scherrer Equation to Estimate More Accurately Nano-Crystallite Size Using XRD,” World J. Nano Sci. Eng., vol. 02, no. 03, pp. 154–160, 2012, doi: 10.4236/wjnse.2012.23020. 10. T. Ekström, C. Chatfield, W. Wruss, and M. Maly-Schreiber, “The use of X-ray diffraction peak-broadening analysis to characterize ground Al2O3 powders,” J. Mater. Sci., vol. 20, no. 4, pp. 1266–1274, 1985, doi: 10.1007/BF01026322. 11. A. Asadi, I. M. Alarifi, and L. K. Foong, “An experimental study on characterization, stability and dynamic viscosity of CuO-TiO2/water hybrid nanofluid,” J. Mol. Liq., vol. 307, 2020, doi: 10.1016/j.molliq.2020.112987. 12. M. Aravind, M. Amalanathan, and M. S. M. Mary, “Synthesis of TiO2 nanoparticles by chemical and green synthesis methods and their multifaceted properties,” SN Appl. Sci., vol. 3, no. 4, pp. 1–10, 2021, doi: 10.1007/s42452-021-04281-5. 13. R. C. Van Nostrand, Design of Experiments Using the Taguchi Approach: 16 Steps to Product and Process Improvement, vol. 44, no. 3. 2002. doi: 10.1198/004017002320256440. 14. R. LeSar and R. LeSar, “Materials selection and design,” Introd. to Comput. Mater. Sci., pp. 269–278, 2013, doi: 10.1017/cbo9781139033398.015. 15. C. Selvam, R. Solaimalai Raja, D. Mohan Lal, and S. Harish, “Overall heat transfer coefficient improvement of an automobile radiator with graphene based suspensions,” Int. J. Heat Mass Transf., vol. 115, pp. 580–588, 2017, doi: 10.1016/j.ijheatmasstransfer.2017.08.071. 16. M. F. Ismail, W. H. Azmi, R. Mamat, and A. H. Hamisa, “Experimental Investigation on Newtonian Behaviour and Viscosity of TiO2/PVE Nanolubricants for Application in Refrigeration System,” Journal of Advanced Research in Fluid Mechanics and Thermal Sciences, vol. 92, no. 1. pp. 9–17, 2022. doi: 10.37934/arfmts.92.1.917. 17. A. A. Abbasian Arani and J. Amani, “Experimental study on the effect of TiO 2-water nanofluid on heat transfer and pressure drop,” Exp. Therm. Fluid Sci., vol. 42, pp. 107–115, 2012, doi: 10.1016/j.expthermflusci.2012.04.017. 18. M. S. Liu, M. C. C. Lin, I. Te Huang, and C. C. Wang, “Enhancement of thermal conductivity with CuO for nanofluids,” Chem. Eng. Technol., vol. 29, no. 1, pp. 72–77, 2006, doi: 10.1002/ceat.200500184. 19. J. Fal, J. Sobczak, R. Stagraczyński, P. Estellé, and G. Żyła, “Electrical conductivity of titanium dioxide ethylene glycol-based nanofluids: Impact of nanoparticles phase and concentration,” Powder Technol., vol. 404, 2022, doi: 10.1016/j.powtec.2022.117423. 20. C. R. Tubío, F. Guitián, J. R. Salgueiro, and A. Gil, “Anatase and rutile TiO2 monodisperse microspheres by rapid thermal annealing: A method to avoid sintering at high temperatures,” Mater. Lett., vol. 141, pp. 203–206, 2015, doi: 10.1016/j.matlet.2014.11.063. 21. I. Subuki, M. F. Mohsin, M. H. Ismail, and F. S. M. Fadzil, “Study of the synthesis of zirconia powder from zircon sand obtained from zircon minerals malaysia by caustic fusion method,” Indones. J. Chem., vol. 20, no. 4, pp. 782–790, 2020, doi: 10.22146/IJC.43936. 22. L. Shi, Y. He, X. Wang, and Y. Hu, “Recyclable photo-thermal conversion and purification systems via Fe3O4@TiO2 nanoparticles,” Energy Convers. Manag., vol. 171, no. May, pp. 272–278, 2018, doi: 10.1016/j.enconman.2018.05.106. 23. M. T. Puth, M. Neuhäuser, and G. D. Ruxton, “Effective use of Spearman’s and Kendall’s correlation coefficients forassociation between two measured traits,” Anim. Behav., vol. 102, pp. 77–84, 2015, doi: 10.1016/j.anbehav.2015.01.010. 24. E. Sombatsawat, “Musculoskeletal disorders among rice farmers in Phimai District, Nakhon RatchasimaProvince, Thailand,” J. Heal. Res., vol. 33, no. 6, pp. 494–503, 2019. 25. H. Mahmoudi Chenari, “X-ray powder diffraction line broadening analysis of the nanocrystalline tin dioxide by the classical Warren-Averbach approach,” Eur. Phys. J. Plus, vol. 133, no. 2, pp. 2–7, 2018, doi: 10.1140/epjp/i2018-11867-5. 26. V. S. Aigbodion, S. B. Hassan, T. Ause, and G. B. Nyior, “Potential Utilization of Solid Waste (Bagasse Ash),” J. Miner. Mater. Charact. Eng., vol. 09, no. 01, pp. 67–77, 2010, doi: 10.4236/jmmce.2010.91006. 27. P. Nyamukamba, O. Okoh, H. Mungondori, R. Taziwa, and S. Zinya, “Synthetic Methods for Titanium Dioxide Nanoparticles: A Review,” Titan. Dioxide - Mater. a Sustain. Environ., 2018, doi: 10.5772/intechopen.75425. 28. G. J. Tertsinidou et al., “New measurements of the apparent thermal conductivity of nanofluids and investigation of their heat transfer capabilities,” J. Chem. Eng. Data, vol. 62, no. 1, pp. 491–507, 2017, doi: 10.1021/acs.jced.6b00767.
Refbacks
- There are currently no refbacks.