Mechanical Properties of PVA/Alginate Membranes Fabricated using Electrospinning as A Wound Dressing

Putri Endah Puspita Sari, Ngurah Ayu Ketut Umiati, A Subagio

Abstract

Alginate is an interesting natural biopolymer due to its many benefits and good biological properties. Observing the mechanical properties of PVA/Alginate fibers made by electrospinning machines can help predict their behavior and measure their performance under various conditions including applied external forces. Therefore, this study investigated the elastic properties of PVA/Alginate membranes, specifically tensile strength and elongation. The fabrication material used is PVA / Alginate solution with a PVA solution concentration of 20% and alginate solution 2.5%. The electrospinning process is carried out by optimizing at a voltage of 25 kV, the distance between the spinneret end and the collector is 15 cm, the flow rate is 130, and the spinneret diameter variations are 0.4 mm, 0.6 mm, and 0.8 mm. To determine the morphology of the fiber surface, observations were made using ocular microscopes and SEM. From this observation, it is known that the morphology formed using a 0.4 mm spinneret has the tightest structure among the three sizes of spinneret diameter. To determine the effect of spinneret diameter on the value of tensile strength and elongation, tensile strength tests are carried out. The tensile strength and elongation values of the membrane obtained with variations in spinneret diameters of 0.4 mm, 0.6 mm, and 0.8 mm are 1.96 MPa, 3.77 MPa and 6.11 MPa respectively and the elongation values are 17%, 52.7%, and 97%.  With medical material standards, it has a tensile strength value between 1 MPa – 24 MPa and an elongation value between 17% – 207%, so that PVA / Alginate fiber membranes have the potential to be applied as wound dressings.

Keywords

alginate; electrospinning; mechanical properties; wound dressings

Full Text:

PDF

References

1 Baji, A., Mai, Y. W., Wong, S. C., Abtahi, M., & Chen, P. 2010. Electrospinning of polymer nanofibers: Effects on oriented morphology, structures and tensile properties. Composites Science and Technology, 70(5), 703–718.

2 Bhardwaj, N., & Kundu, S. C. 2010. Electrospinning: A fascinating fiber fabrication technique. Biotechnology Advances, 28(3), 325–347.

3 Liu, Y., He, J. H., & Yu, J. Y. 2008. Bubble-electrospinning: A novel method for making nanofibers. Journal of Physics: Conference Series, 96(1).

4 Tang, B. Z., Abd-El-Aziz, A. S., & Craig, S. 2014. Electrospinning Series Editors: Titles in the Series: www.rsc.org

5 Wang, F., Hu, S., Jia, Q., & Zhang, L. 2020. Advances in Electrospinning of Natural Biomaterials for Wound Dressing. Journal of Nanomaterials, 2020.

6 Varaprasad, K., Jayaramudu, T., Kanikireddy, V., Toro, C., & Sadiku, E. R. 2020. Alginate-based composite materials for wound dressing application: A mini review. Carbohydrate Polymers, 236, 116025

7 Kianersi, S., Solouk, A., Samandari, Saeed Saber Keshel, S. H., & Pooria, P. 2021. Alginate nanoparticles as ocular drug delivery carriers. Journal of Drug Delivery Science and Technology, 66.


8 Zheng, Y., Wang, L., Bai, X., Xiao, Y., & Che, J. 2022. Bio-inspired composite by hydroxyapatite mineralization on (bis) phosphonate-modified cellulose-alginate scaffold for bone tissue engineering. Colloids and Surfaces A: Physicochemical and Engineering Aspects, Volume 635.

9 Islam, M. S., & Karim, M. R. 2010. Fabrication and characterization of poly (vinyl alcohol)/alginate blend nanofibers by electrospinning method. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 366(1–3), 135–140.

10 Jeong, S. I., Krebs, M. D., Bonino, C. A., Khan, S. A., & Alsberg, E. 2010. Electrospun alginate nanofibers with controlled cell adhesion for tissue engineering. Macromolecular Bioscience, 10(8), 934–943.

11 Stachewicz, U., Bailey, R. J., Wang, W., & Barber, A. H. 2012. Size dependent mechanical properties of electrospun polymer fibers from a composite structure. Polymer, 53(22), 5132–5137.

12 Kontomaris, S. V., Georgakopoulos, A., Malamou, A., & Stylianou, A. 2021. The average Young’s modulus as a physical quantity for describing the depth-dependent mechanical properties of cells. Mechanics of Materials, 158 103846.

13 Robaitullah. 2017. Pengaruh Konsentrasi Nanokitosan Terhadap Sifat Tarik Membran Serat Nano Polivinil Alkohol (PVA)/ Nanokitosan. Jurnal Material Dan Proses Manufaktur-UMY, YY(20XX), pagestart-pagefin. www.umy.ac.id/..../....

14 Subyakto, H. E., Yanto DHY, F., Budiman I, I., & Masruchin N, S. B. 2009. Proses Pembuatan Serat Selulosa Berukuran Nano dari Sisal (Agave Sisalana) dan Bambu Betung (Dendrocalamus Asper). Berita Selulosa, 44(2), 57-65.

15 Stachewicz, U., Bailey, R. J., Wang, W., & Barber, A. H. 2012. Size Dependent Mechanical Properties of Electrospun Polymer Fibers from A Composite Structure. Polymer, 53(22), 5132–5137

16 H. Fong, I. Chun, D. H. R., & Maurice. 2009. Physical principles of electrospinning (Electrospinning as a nano-scale technology of the twenty-first century). Textile Progress, 40(May), 01–140

17 Hochleitner, G., Hümmer, J. F., Luxenhofer, R., & Groll, J. 2014. High Definition Fibrous Poly(2-ethyl-2-oxazoline) Scaffolds Through Melt Electrospinning Writing. Polymer, 55(20), 5017–5023.

18 Erizal, & Rahayu, C. 1998. Karakterisasi Hidrogel Polivinil Alkohol (PVA) Hasil Polimerisasi Radiasi. Penelitian Dan Pengembangan Aplikasi Isotop Dan Radiasi, 137–144.

19 Shalumon, K. T., Anulekha, K. H., Nair, S. V., Nair, S. V., Chennazhi, K. P., & Jayakumar, R. 2011. Sodium Alginate/Poly(Vinyl Alcohol)/Nano ZnO Composite Nanofibers for Antibacterial Wound Dressings. International Journal of Biological Macromolecules, 49(3), 247–254.

20 Meilanny, D. K. P., Pranjono, B. E., & Hikmawati, D. 2015. Metode Elektrospining Untuk Mensintesis Komposit Berbasis Alginat-Polivinil Alkohol Dengan Penambahan Lendir Bekicot (Achatina Fulica). Prosiding Pertemuan Dan Presentasi Ilmiah Teknologi Akselerator Dan Aplikasinya, 17(November), 65–71.

21 Annaidh, N. A., Bruyère, K., Destrade, M., Gilchrist, M. D., & Otténio, M. 2012. Characterization of The Anisotropic Mechanical Properties of Excised Human Skin. Journal of the Mechanical Behavior of Biomedical Materials, 5(1), 139–148.

Refbacks

  • There are currently no refbacks.