First-Principle Investigation of La0.7Ba0.3Mn(1-x)FexO3 Structural Properties Using CASTEP

Sitti Ahmiatri Saptari, Sarah Aulia, Ryan Rizaldy, Anugrah Azhar

Abstract

We conducted first-principles Density Functional Theory (DFT) calculations using the CASTEP software package to investigate the crystal structure and mechanical properties of Fe3+-doped La0.7Ba0.3MnO3 material at the Mn3+ site, with doping concentrations ranging up to 50%. Through geometry optimization, we simulated the X-ray diffraction (XRD) pattern. We observed that the doping of Fe did not result in a shift in the peak positions of the diffraction pattern. However, it led to an increase in intensity at the [012] peak and the splitting of peaks [104] and [110]. Regarding the mechanical properties, we examined the elastic constants and observed a reduction in the Bulk, Shear, and Young's modulus values. The Shear and Bulk modulus and Poisson's ratio indicated that La0.7Ba0.3Mn(1-x)FexO3 becomes less ductile with increased Fe3+ doping content. Furthermore, we performed calculations for the Debye temperature, which revealed a decrease in the thermal conductivity of the La0.7Ba0.3Mn(1-x)FexO3 material.

 

Keywords

DFT, La0.7Ba0.3Mn(1-x)FexO3, CASTEP, XRD simulation, elastic constant.

Full Text:

PDF

References

Xia, W., Pei, Z., Leng, K., & Zhu, X. 2020. Research Progress in Rare Earth-Doped Perovskite Manganite Oxide Nanostructures. Nanoscale Research Letters, 15(1), 9.

Zeng, Z., Xu, Y., Zhang, Z., Gao, Z., Luo, M., Yin, Z., Zhang, C., Xu, J., Huang, B., Luo, F., Du, Y., & Yan, C. 2020. Rare-earth-containing perovskite nanomaterials: design, synthesis, properties and applications. Chemical Society Reviews, 49(4), 1109–1143.

Wang, H., Zhang, H., Su, K., Huang, S., Tan, W., & Huo, D. 2020. Structure, charge ordering, and magnetic properties of perovskite Sm0.5Ca0.5MnO3 manganite. Journal of Materials Science: Materials in Electronics, 31(17), 14421–14425.

Li, B., Tian, F., Cui, X., Xiang, B., Zhao, H., Zhang, H., Wang, D., Li, J., Wang, X., Fang, X., Qiu, M., & Wang, D. 2022. Review for Rare-Earth-Modified Perovskite Materials and Optoelectronic Applications. Nanomaterials, 12(10), 1773.

Badelin, A. G., Karpasyuk, V. K., Merkulov, D. I., Eremina, R. M., Yatsyk, I. V., Shestakov, A. V., & Estemirova, S. Kh. 2020. Effect of Iron Doping on Structural, Magnetic, and Electrical Characteristics of Manganites in La0.7Sr0.3Mn0.9Zn0.1–xFexO3 (0 ≤ x ≤ 0.1) System. Inorganic Materials: Applied Research, 11(2), 435–440.

Jayakumar, G., Poomagal, D. S., Albert Irudayaraj, A., Dhayal Raj, A., Kethrin Thresa, S., & Akshadha, P. 2020. Study on structural, magnetic and electrical properties of perovskite lanthanum strontium manganite nanoparticles. Journal of Materials Science: Materials in Electronics, 31(23), 20945–20953.

Hassayoun, O., Baazaoui, M., Laouyenne, M. R., Hosni, F., Hlil, E. K., Oumezzine, M., & Farah, Kh. 2019. Magnetocaloric effect and electron paramagnetic resonance studies of the transition from ferromagnetic to paramagnetic in La0.8Na0.2Mn1-xNixO3 (0≤x≤0.06). Journal of Physics and Chemistry of Solids, 135, 109058.

Oumezzine, Ma., Sales, H. B., Selmi, A., & Hlil, E. K. 2019. Pr3+ doping at the A-site of La0.67Ba0.33MnO3 nanocrystalline material: assessment of the relationship between structural and physical properties and Bean–Rodbell model simulation of disorder effects. RSC Advances, 9(44), 25627–25637.

Baazaoui, M., Boudard, M., & Zemni, S. 2011. Magnetocaloric properties in Ln0.67Ba0.33Mn1−xFexO3 (Ln=La or Pr) manganites. Materials Letters, 65(14), 2093–2095.

M. G., S., Kumar H. L., S., & Shwetha. 2023. Morphological, structural, electrical impedance, and equivalent circuit analysis of polypyrrole/barium substituted lanthanum manganite (La0.7Ba0.3MnO3) perovskite nanocomposites. International Journal of Polymer Analysis and Characterization, 28(3), 241–255.

Koner, S., Deshmukh, P., Ahlawat, A., Karnal, A. K., & Satapathy, S. 2021. Studies on structural, dielectric, impedance spectroscopy and magneto-dielectric properties of La0.7Ba0.3MnO3/P (VDF-TrFE) multiferroic (0–3) nanocomposite films. Journal of Alloys and Compounds, 868, 159104.

Koner, S., Deshmukh, P., Ali Khan, A., Ahlawat, A., Karnal, A. K., & Satapathy, S. 2020. Multiferroic properties of La0.7Ba0.3MnO3/P(VDF-TrFE) (0-3) nanocomposite films. Materials Letters, 261, 127161.

Esmaeili, S., Ehsani, M. H., & Fazli, M. 2020. Structural, optical and photocatalytic properties of La0.7Ba0.3MnO3 nanoparticles prepared by microwave method. Chemical Physics, 529, 110576.

Sazali, M. S., Ibrahim, N., Mohamed, Z., Rajmi, R., & Yahya, A. K. 2021. Effect of Fe3+ Partial Substitution at Mn-Site on Electroresistance Behaviour in La0.7Ba0.3Mn1-xFexO3(x = 0 and 0.02) Manganites. Solid State Phenomena, 317, 3–9.

Esmaeili, S., Ehsani, M. H., & Fazli, M. 2020. Photocatalytic activities of La0.7Ba0.3MnO3 nanoparticles. Optik, 216, 164812.

Baazaoui, M., Zemni, S., Boudard, M., Rahmouni, H., Gasmi, A., Selmi, A., & Oumezzine, M. 2009. Magnetic and electrical behavior of La0.67Ba0.33Mn1−xFexO3 perovskites. Materials Letters, 63(24–25), 2167–2170.

Kallel, N., Abdelkhalek, S. Ben, Kallel, S., Peña, O., & Oumezzine, M. 2010. Structural and magnetic properties of (La0.70−xYx)Ba0.30Mn1−xFexO3 perovskites simultaneously doped on A and B sites (0.0≤x≤0.30). Journal of Alloys and Compounds, 501(1), 30–36.

Ghodhbane, S., Dhahri, A., Dhahri, N., Hlil, E. K., & Dhahri, J. 2013. Structural, magnetic and magnetocaloric properties of La0.8Ba0.2Mn1−xFexO3 compounds with 0⩽x⩽0.1. Journal of Alloys and Compounds, 550, 358–364.

Shannon, R. D. 1976. Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides. Acta Crystallographica Section A, 32(5), 751–767.

Sazali, M. S., Ibrahim, N., Mohamed, Z., Rajmi, R., & Yahya, A. K. 2021. Effect of Fe3+ Partial Substitution at Mn-Site on Electroresistance Behaviour in La0.7Ba0.3Mn(1-x)Fe(x)O3(x = 0 and 0.02) Manganites. Solid State Phenomena, 317, 3–9.

Ubic, R., Tolman, K., Talley, K., Joshi, B., Schmidt, J., Faulkner, E., Owens, J., Papac, M., Garland, A., Rumrill, C., Chan, K., Lundy, N., & Kungl, H. 2015. Lattice-constant prediction and effect of vacancies in aliovalently doped perovskites. Journal of Alloys and Compounds, 644, 982–995.

Smith, E., Wander, O., & Ubic, R. 2020. Empirical models of trigonal distortions and polarization in perovskites. Journal of the American Ceramic Society, 103(12), 7172–7187.

Lufaso, M. W., & Woodward, P. M. 2001. Prediction of the crystal structures of perovskites using the software program SPuDS. Acta Crystallographica Section B Structural Science, 57(6), 725–738.

Clark, S. J., Segall, M. D., Pickard, C. J., Hasnip, P. J., Probert, M. I. J., Refson, K., & Payne, M. C. 2005. First principles methods using CASTEP. Zeitschrift Für Kristallographie - Crystalline Materials, 220(5–6), 567–570.

Huang, T.-S., Chen, C.-H., & Tai, M.-F. 2001. Studies on Crystal Structure and Magnetic Scaling Behavior of Perovskite-Like (La1−x Pbx )MnO 3 System with x = 0 - 0.5. MRS Proceedings, 674, U3.4.

Zahrin, A., Azhar, N. A., Ibrahim, N., & Mohamed, Z. 2022. Structural, Magnetic, and Electrical Properties and Magnetoresistance of Monovalent K-Substituted La0.7Ba0.3−xKxMnO3 (x = 0 and 0.04) Manganite. Condensed Matter, 7(3), 51.

Jeddi, M., Massoudi, J., Gharsallah, H., Ahmed, S. I., Dhahri, E., & Hlil, E. K. 2021. Impact of potassium substitution on structural, magnetic, magnetocaloric and magneto-transport properties of Nd0.6Sr0.4−xKxMnO3 (0.0 ≤ x ≤ 0.2) manganite. Journal of Materials Science: Materials in Electronics, 32(14), 18751–18764.

Messaoui, I., Riahi, K., Kumaresavanji, M., Cheikhrouhou Koubaa, W., & Cheikhrouhou, A. (2018). Potassium doping induced changes of magnetic and magnetocaloric properties of La0.78Cd0.22−xKxMnO3 (x = 0.00, 0.10, 0.15 and 0.20) manganites. Journal of Magnetism and Magnetic Materials, 446, 108–117.

Kohn, W., & Sham, L. J. 1965. Self-Consistent Equations Including Exchange and Correlation Effects. Physical Review, 140(4A), A1133–A1138.

Perdew, J. P., Burke, K., & Ernzerhof, M. 1996. Generalized Gradient Approximation Made Simple. Physical Review Letters, 77(18), 3865–3868.

Francis, G. P., & Payne, M. C. 1990. Finite basis set corrections to total energy pseudopotential calculations. Journal of Physics: Condensed Matter, 2(19), 4395–4404.

Pfrommer, B. G., Côté, M., Louie, S. G., & Cohen, M. L. 1997. Relaxation of Crystals with the Quasi-Newton Method. Journal of Computational Physics, 131(1), 233–240.

Truesdell, C. 1984. Murnaghan's Finite Deformation of an Elastic Solid (1952). In An Idiot's Fugitive Essays on Science (pp. 148–150). Springer New York.

Voigt, W. 1928. Lehrbuch der kristallphysik. Teubner, Leipzig/Berlin, 34.

Reuss, A. 1929. Berechnung der Fließgrenze von Mischkristallen auf Grund der Plastizitätsbedingung für Einkristalle. ZAMM - Zeitschrift Für Angewandte Mathematik Und Mechanik, 9(1), 49–58.

Hill, R. 1952. The Elastic Behaviour of a Crystalline Aggregate. Proceedings of the Physical Society. Section A, 65(5), 349–354.

Macrae, C. F., Sovago, I., Cottrell, S. J., Galek, P. T. A., McCabe, P., Pidcock, E., Platings, M., Shields, G. P., Stevens, J. S., Towler, M., & Wood, P. A. 2020. Mercury 4.0: from visualization to analysis, design and prediction. Journal of Applied Crystallography, 53(1), 226–235.

Momma, K., & Izumi, F. 2011. VESTA 3 for three-dimensional visualization of crystal, volumetric and morphology data. Journal of Applied Crystallography, 44(6), 1272–1276.

Ahn, K. H., Wu, X. W., Liu, K., & Chien, C. L. 1996. Magnetic properties and colossal magnetoresistance of La(Ca)MnO3 materials doped with Fe. Physical Review B, 54(21), 15299–15302.

Troyanchuk, I. O., Bushinsky, M. V., Karpinsky, D. V., Tereshko, N. V., Dobryansky, V. M., Többens, D. M., Sikolenko, V., & Efimov, V. 2015. Magnetic interactions in La0.7Sr0.3Mn1−Me O3 (Me=Ga, Fe, Cr) manganites. Journal of Magnetism and Magnetic Materials, 394, 212–216.

Ghodhbane, S., Dhahri, A., Dhahri, N., Hlil, E. K., & Dhahri, J. 2013. Structural, magnetic and magnetocaloric properties of La0.8Ba0.2Mn1−xFexO3 compounds with 0⩽x⩽0.1. Journal of Alloys and Compounds, 550, 358–364.

Mouhat, F., & Coudert, F.-X. 2014. Necessary and sufficient elastic stability conditions in various crystal systems. Physical Review B, 90(22), 224104.

Koriba, I., Lagoun, B., Guibadj, A., Belhadj, S., Ameur, A., & Cheriet, A. 2021. Structural, electronic, magnetic and mechanical properties of three LaMnO3 phases: Theoretical investigations. Computational Condensed Matter, 29, e00592.

Coulson, C. A. 1958. Physical Properties of Crystals. By J. F. Nye . Pp. xv, 322, 50s. 1957. (Oxford: Clarendon Press). The Mathematical Gazette, 42(342), 329–330.

Tian, Y., Xu, B., & Zhao, Z. 2012. Microscopic theory of hardness and design of novel superhard crystals. International Journal of Refractory Metals and Hard Materials, 33, 93–106.

Ikhsan, F., Kurniawan, B., Razaq, D. S., Munazat, D. R., & Putri, Witha. B. K. 2023. Effect of Fe and Ti doping on Mn site of La0.7Ba0.3Mn0.85Fe0.15-xTixO3 as electromagnetic wave absorbing material. 060004.

Antonio, J. E., Cervantes, J. M., Rosas-Huerta, J. L., Romero, M., Escamilla, R., & Carvajal, E. 2021. Exposed Surface and Confinement Effects on the Electronic, Magnetic, and Mechanical Properties of LaTiO₃ Slabs. IEEE Transactions on Magnetics, 57(6), 1–4.

Huang, C. W., Ren, W., Nguyen, V. C., Chen, Z., Wang, J., Sritharan, T., & Chen, L. 2012. Abnormal Poisson’s ratio and Linear Compressibility in Perovskite Materials. Advanced Materials, 24(30), 4170–4174.

Kiely, E., Zwane, R., Fox, R., Reilly, A. M., & Guerin, S. 2021. Density functional theory predictions of the mechanical properties of crystalline materials. CrystEngComm, 23(34), 5697–5710.

Carneiro, V., & Puga, H. 2018) Temperature Variability of Poisson’s Ratio and Its Influence on the Complex Modulus Determined by Dynamic Mechanical Analysis. Technologies, 6(3), 81.

Güler, E., Uğur, Ş., Güler, M., & Uğur, G. 2021. First principles study of structural, elastic, mechanical and electronic properties of nitrogen-doped cubic diamond. Bulletin of Materials Science, 44(1), 1.

Ranganathan, S. I., & Ostoja-Starzewski, M. 2008. Universal Elastic Anisotropy Index. Physical Review Letters, 101(5), 055504.

Anderson, O. L. 1963. A simplified method for calculating the debye temperature from elastic constants. Journal of Physics and Chemistry of Solids, 24(7), 909–917.

Refbacks

  • There are currently no refbacks.