First-Principle Investigation of La0.7Ba0.3Mn(1-x)FexO3 Structural Properties Using CASTEP

Sitti Ahmiatri Saptari, Sarah Aulia, Ryan Rizaldy, Anugrah Azhar


We conducted first-principles Density Functional Theory (DFT) calculations using the CASTEP software package to investigate the crystal structure and mechanical properties of Fe3+-doped La0.7Ba0.3MnO3 material at the Mn3+ site, with doping concentrations ranging up to 50%. Through geometry optimization, we simulated the X-ray diffraction (XRD) pattern. We observed that the doping of Fe did not result in a shift in the peak positions of the diffraction pattern. However, it led to an increase in intensity at the [012] peak and the splitting of peaks [104] and [110]. Regarding the mechanical properties, we examined the elastic constants and observed a reduction in the Bulk, Shear, and Young's modulus values. The Shear and Bulk modulus and Poisson's ratio indicated that La0.7Ba0.3Mn(1-x)FexO3 becomes less ductile with increased Fe3+ doping content. Furthermore, we performed calculations for the Debye temperature, which revealed a decrease in the thermal conductivity of the La0.7Ba0.3Mn(1-x)FexO3 material.



DFT, La0.7Ba0.3Mn(1-x)FexO3, CASTEP, XRD simulation, elastic constant.

Full Text:



Dagotto, E., Hotta, T., & Moreo, A. (2001). Colossal magnetoresistant materials: the key role of phase separation. Physics Reports, 344(1–3), 1–153. 2 Ngan, A. H. W., & Zhang, H. F. (1999). A universal relation for the stress dependence of activation energy for slip in body-centered cubic crystals. Journal of Applied Physics, 86(3), 1236–1244. 3 Tishin, A. M., & Spichkin, Y. I. (2016). The Magnetocaloric Effect and its Applications. CRC Press. 4 Lim, K. P., Ng, S. W., Halim, S. A., Chen, S. K., & Wong, J. K. (2009). Effect of Divalent Ions (A = Ca, Ba and Sr) Substitution in La-A-Mn-O Manganite on Structural, Magnetic and Electrical Transport Properties. American Journal of Applied Sciences, 6(6), 1153–1157. 5 Baazaoui, M., Boudard, M., & Zemni, S. (2011). Magnetocaloric properties in Ln0.67Ba0.33Mn1−xFexO3 (Ln=La or Pr) manganites. Materials Letters, 65(14), 2093–2095. 6 M. G., S., Kumar H. L., S., & Shwetha. (2023). Morphological, structural, electrical impedance, and equivalent circuit analysis of polypyrrole/barium substituted lanthanum manganite (La 0.7 Ba 0.3 MnO3) perovskite nanocomposites. International Journal of Polymer Analysis and Characterization, 28(3), 241–255. 7 Koner, S., Deshmukh, P., Ahlawat, A., Karnal, A. K., & Satapathy, S. (2021). Studies on structural, dielectric, impedance spectroscopy and magneto-dielectric properties of La0.7Ba0.3MnO3/P(VDF-TrFE) multiferroic (0–3) nanocomposite films. Journal of Alloys and Compounds, 868, 159104. 8 Koner, S., Deshmukh, P., Ali Khan, A., Ahlawat, A., Karnal, A. K., & Satapathy, S. (2020). Multiferroic properties of La0.7Ba0.3MnO3/P(VDF-TrFE) (0-3) nano-composite films. Materials Letters, 261, 127161. 9 Esmaeili, S., Ehsani, M. H., & Fazli, M. (2020). Structural, optical and photo-catalytic properties of La0.7Ba0.3MnO3 nanoparticles prepared by microwave method. Chemical Physics, 529, 110576. 10 Sazali, M. S., Ibrahim, N., Mohamed, Z., Rajmi, R., & Yahya, A. K. (2021). Effect of Fe3+ Partial Substitution at Mn-Site on Electroresistance Behaviour in La0.7Ba0.3Mn1-xFexO3 (x = 0 and 0.02) Manganites. Solid State Phenomena, 317, 3–9. 11 Esmaeili, S., Ehsani, M. H., & Fazli, M. (2020). Photo-catalytic activities of La0.7Ba 0.3MnO3 nanoparticles. Optik, 216, 164812. 12 Baazaoui, M., Zemni, S., Boudard, M., Rahmouni, H., Gasmi, A., Selmi, A., & Oumezzine, M. (2009). Magnetic and electrical behaviour of La0.67Ba0.33Mn1−xFexO3 perovskites. Materials Letters, 63(24–25), 2167–2170. 13 Kallel, N., Abdelkhalek, S. Ben, Kallel, S., Peña, O., & Oumezzine, M. (2010). Structural and magnetic properties of (La0.70−xYx)Ba0.30Mn1−xFexO3 perovskites simultaneously doped on A and B sites (0.0≤x≤0.30). Journal of Alloys and Compounds, 501(1), 30–36. 14 Ghodhbane, S., Dhahri, A., Dhahri, N., Hlil, E. K., & Dhahri, J. (2013). Structural, magnetic and magnetocaloric properties of La0.8Ba0.2Mn1−xFexO3 compounds with 0⩽x⩽0.1. Journal of Alloys and Compounds, 550, 358–364. 15 Shannon, R. D. (1976). Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides. Acta Crystallographica Section A, 32(5), 751–767. 16 Ubic, R. (2007). Revised Method for the Prediction of Lattice Constants in Cubic and Pseudocubic Perovskites. Journal of the American Ceramic Society, 90(10), 3326–3330. 17 Ubic, R., & Subodh, G. (2009). The prediction of lattice constants in orthorhombic perovskites. Journal of Alloys and Compounds, 488(1), 374–379. 18 Ubic, R., Tolman, K., Talley, K., Joshi, B., Schmidt, J., Faulkner, E., Owens, J., Papac, M., Garland, A., Rumrill, C., Chan, K., Lundy, N., & Kungl, H. (2015). Lattice-constant prediction and effect of vacancies in aliovalently doped perovskites. Journal of Alloys and Compounds, 644, 982–995. 19 Smith, E., Wander, O., & Ubic, R. (2020). Empirical models of trigonal distortions and polarization in perovskites. Journal of the American Ceramic Society, 103(12), 7172–7187. 20 Lufaso, M. W., & Woodward, P. M. (2001). Prediction of the crystal structures of perovskites using the software program SPuDS. Acta Crystallographica Section B Structural Science, 57(6), 725–738. 21 Clark, S. J., Segall, M. D., Pickard, C. J., Hasnip, P. J., Probert, M. I. J., Refson, K., & Payne, M. C. (2005). First principles methods using CASTEP. Zeitschrift Für Kristallographie - Crystalline Materials, 220(5–6), 567–570. 22 Huang, T.-S., Chen, C.-H., & Tai, M.-F. (2001). Studies on Crystal Structure and Magnetic Scaling Behavior of Perovskite-Like (La 1−x Pb x)MnO 3 System with x = 0 - 0.5. MRS Proceedings, 674, U3.4. 23 Goldschmidt, V. M. (1926). Die Gesetze der Krystallochemie. Die Naturwissenschaften, 14(21), 477–485. 24 SEBASTIAN, M. T. (2008). ABO3 TYPE PEROVSKITES. In Dielectric Materials for Wireless Communication (pp. 161–203). Elsevier. 25 Tilley, R. J. D. (2016). Perovskites: structure-property relationships. John Wiley & Sons. 26 Schinzer, C. (2012, May 17). Distortion of Perovskite. 27 Kohn, W., & Sham, L. J. (1965). Self-Consistent Equations Including Exchange and Correlation Effects. Physical Review, 140(4A), A1133–A1138. 28 Hohenberg, P., & Kohn, W. (1964). Inhomogeneous Electron Gas. Physical Review, 136(3B), B864–B871. 29 Perdew, J. P., Burke, K., & Ernzerhof, M. (1996). Generalized Gradient Approximation Made Simple. Physical Review Letters, 77(18), 3865–3868. 30 Francis, G. P., & Payne, M. C. (1990). Finite basis set corrections to total energy pseudopotential calculations. Journal of Physics: Condensed Matter, 2(19), 4395–4404. 31 Pfrommer, B. G., Côté, M., Louie, S. G., & Cohen, M. L. (1997). Relaxation of Crystals with the Quasi-Newton Method. Journal of Computational Physics, 131(1), 233–240. 32 Truesdell, C. (1984). Murnaghan's Finite Deformation of an Elastic Solid (1952). In An Idiot's Fugitive Essays on Science (pp. 148–150). Springer New York. 33 Voigt, W. (1928). Lehrbuch der kristallphysik. Teubner, Leipzig/Berlin, 34. 34 Reuss, A. (1929). Berechnung der Fließgrenze von Mischkristallen auf Grund der Plastizitätsbedingung für Einkristalle. ZAMM - Zeitschrift Für Angewandte Mathematik Und Mechanik, 9(1), 49–58. 35 Hill, R. (1952). The Elastic Behaviour of a Crystalline Aggregate. Proceedings of the Physical Society. Section A, 65(5), 349–354. 36 Macrae, C. F., Sovago, I., Cottrell, S. J., Galek, P. T. A., McCabe, P., Pidcock, E., Platings, M., Shields, G. P., Stevens, J. S., Towler, M., & Wood, P. A. (2020). Mercury 4.0 : from visualization to analysis, design and prediction. Journal of Applied Crystallography, 53(1), 226–235. 37 Momma, K., & Izumi, F. (2011). VESTA 3 for three-dimensional visualization of crystal, volumetric and morphology data. Journal of Applied Crystallography, 44(6), 1272–1276. 38 Mittemeijer, E. J. ; W. U. (2012). Modern Diffraction Methods. Wiley-VCH. 39 Radaelli, P. G., Iannone, G., Marezio, M., Hwang, H. Y., Cheong, S.-W., Jorgensen, J. D., & Argyriou, D. N. (1997). Structural effects on the magnetic and transport properties of perovskite A(1 − x)A′(x)MnO3 ( x = 0.25, 0.30). Physical Review B, 56(13), 8265–8276. 40 Ahn, K. H., Wu, X. W., Liu, K., & Chien, C. L. (1996). Magnetic properties and colossal magnetoresistance of La(Ca)Mn O3 materials doped with Fe. Physical Review B, 54(21), 41 Chang, Y. L., Huang, Q., & Ong, C. K. (2002). Effect of Fe doping on the magnetotransport properties in Nd0.67Sr0.33MnO3 manganese oxides. Journal of Applied Physics, 91(2), 789–793. 42 Ghodhbane, S., Dhahri, A., Dhahri, N., Hlil, E. K., & Dhahri, J. (2013). Structural, magnetic and magnetocaloric properties of La0.8Ba0.2Mn1−xFexO3 compounds with 0⩽x⩽0.1. Journal of Alloys and Compounds, 550, 358–364. 43 Mouhat, F., & Coudert, F.-X. (2014). Necessary and sufficient elastic stability conditions in various crystal systems. Physical Review B, 90(22), 224104. 44 Koriba, I., Lagoun, B., Guibadj, A., Belhadj, S., Ameur, A., & Cheriet, A. (2021). Structural, electronic, magnetic and mechanical properties of three LaMnO3 phases: Theoretical investigations. Computational Condensed Matter, 29, e00592. 45 Coulson, C. A. (1958). Physical Properties of Crystals. By J. F. Nye . Pp. xv, 322, 50s. 1957. (Oxford: Clarendon Press). The Mathematical Gazette, 42(342), 329–330. 46 Tian, Y., Xu, B., & Zhao, Z. (2012). Microscopic theory of hardness and design of novel superhard crystals. International Journal of Refractory Metals and Hard Materials, 33, 93–106. 47 Haines, J., Léger, J., & Bocquillon, G. (2001). Synthesis and Design of Superhard Materials. Annual Review of Materials Research, 31(1), 1–23. 48 Pugh, S. F. (1954). XCII. Relations between the elastic moduli and the plastic properties of polycrystalline pure metals. The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science, 45(367), 823–843. 49 Shein, I. R., & Ivanovskii, A. L. (2008). Elastic properties of mono- and polycrystalline hexagonal AlB 2 -like diborides of s, p and d metals from first-principles calculations. Journal of Physics: Condensed Matter, 20(41), 415218. 50 Ranganathan, S. I., & Ostoja-Starzewski, M. (2008). Universal Elastic Anisotropy Index. Physical Review Letters, 101(5), 055504. 51 Anderson, O. L. (1963). A simplified method for calculating the debye temperature from elastic constants. Journal of Physics and Chemistry of Solids, 24(7), 909–917.


  • There are currently no refbacks.