Graphene as an Active Material for Supercapacitors: A Machine Learning Approach

Anif Jamaluddin, Annisa Dwi Nursanti, Anafi Nur'aini, Rekyan Regasari M Putri, Muhammad Usama Arshad

Abstract

Graphene is a promising material for supercapacitors due to its unique properties, which influence the device's supercapacitor. This study aims to investigate the key factor of graphene properties in supercapacitors (, with the goal of improving their performance. Also, we observe the machine learning models for predicting capacitance of supercapacitor including four algorithms of machine learning: Linear Regression (LR), lazy IBK, Decision Table (DT), and Random Forest (RF). Machine learning model showed that the RF model demonstrated the highest correlation value of 0.745, surpassing other models. Also, the study revealed that graphene has a high specific surface area and highly porous structure, which enhanced the high capacitance values. Finally, these machine learning models are suitable to apply in materials sciences field for understanding the materials properties in supercapacitor.

Keywords

Graphene; Machine Learning; Surface area; Supercapacitors

Full Text:

PDF

References

Arshad, M. U., Dutta, D., Sin, Y. Y., Hsiao, S. W., Wu, C. Y., Chang, B. K., Dai, L., & Su, C. Y. (2022). Multi-functionalized fluorinated graphene composite coating for achieving durable electronics: Ultralow corrosion rate and high electrical insulating passivation. Carbon, 195, 141–153. https://doi.org/10.1016/j.carbon.2022.04.004 Benoy, S. M., Pandey, M., Bhattacharjya, D., & Saikia, B. K. (2022). Recent trends in supercapacitor-battery hybrid energy storage devices based on carbon materials. Journal of Energy Storage, 52(PB), 104938. https://doi.org/10.1016/j.est.2022.104938 Boyea, J. M. et all. (2007). Carbon nanotube-based supercapacitors: technologies and markets. Nanotech. L. & Bus, 4(19). Eibe, F. (2011). Machine Learning with WEKA. Department of Computer Science, University of Waikato, New Zealand. Emiru, T. F., & Ayele, D. W. (2019). Controlled synthesis , characterization and reduction of graphene oxide : A convenient method for large scale production. Egyptian Journal of Basic and Applied Sciences, 4(1), 74–79. https://doi.org/10.1016/j.ejbas.2016.11.002 Feng, S., & Lazkano, I. (2022). Innovation trends in electricity storage: What drives global innovation? Energy Policy, 167(November 2021), 113084. https://doi.org/10.1016/j.enpol.2022.113084 Fevre, L. W. Le, Cao, J., Kinloch, I. A., & Forsyth, A. J. (2019). Systematic Comparison of Graphene Materials for Supercapacitor Electrodes. 418–428. https://doi.org/10.1002/open.201900004 Gao, T., & Lu, W. (2021). iScience ll Machine learning toward advanced energy storage devices and systems. ISCIENCE, 24(1), 101936. https://doi.org/10.1016/j.isci.2020.101936 Hardwick, L. J., Ruch, P. W., Hahn, M., Scheifele, W., Kötz, R., & Novák, P. (2008). In situ Raman spectroscopy of insertion electrodes for lithium-ion batteries and supercapacitors: First cycle effects. Journal of Physics and Chemistry of Solids, 69(5–6), 1232–1237. https://doi.org/10.1016/j.jpcs.2007.10.017 Ji, L., Meduri, P., Agubra, V., Xiao, X., & Alcoutlabi, M. (2016). Graphene-Based Nanocomposites for Energy Storage. Advanced Energy Materials, 6(16), 7–16. https://doi.org/10.1002/aenm.201502159 Jiang, X., Setodoi, S., Fukumoto, S., Imae, I., & Komaguchi, K. (2013). An easy one-step electrosynthesis of graphene / polyaniline composites and electrochemical capacitor. Carbon, 67, 662–672. https://doi.org/10.1016/j.carbon.2013.10.055 Karno, A. S. B. (2020). Prediksi Data Time Series Saham Bank BRI Dengan Mesin Belajar LSTM (Long ShortTerm Memory). Journal of Informatic and Information Security, 1(1), 1–8. https://doi.org/10.31599/jiforty.v1i1.133 Ke, Q., & Wang, J. (2016). Graphene-based materials for supercapacitor electrodes e A review. J Materiomics, 2(1), 37–54. https://doi.org/10.1016/j.jmat.2016.01.001 Kelly-Holmes, H. (2016). Advertising as multilingual communication. Advertising as Multilingual Communication, 45, 1–206. https://doi.org/10.1057/9780230503014 Kim, T., Jung, G., Yoo, S., Suh, K. S., & Ruoff, R. S. (2013). Activated graphene-based carbons as supercapacitor electrodes with macro- and mesopores. ACS Nano, 7(8), 6899–6905. https://doi.org/10.1021/nn402077v Lakshmi, J. V. N., & Sheshasaayee, A. (2016). Machine learning approaches on map reduce for Big Data analytics. Proceedings of the 2015 International Conference on Green Computing and Internet of Things, ICGCIoT 2015, 480–484. https://doi.org/10.1109/ICGCIoT.2015.7380512 Malard, L. M., Pimenta, M. A., Dresselhaus, G., & Dresselhaus, M. S. (2009). Raman spectroscopy in graphene. Physics Reports, 473(5–6), 51–87. https://doi.org/10.1016/j.physrep.2009.02.003 Mendis, N., Muttaqi, K. M., & Perera, S. (2012). Active Power Management of a Super capacitor-Battery Hybrid Energy Storage System for Standalone Operation of DFIG based Wind Turbines. 1–8. Misnon, I. I., Zain, N. K. M., Aziz, R. A., Vidyadharan, B., & Jose, R. (2015). Electrochemical properties of carbon from oil palm kernel shell for high performance supercapacitors. Electrochimica Acta, 174(1), 78–86. https://doi.org/10.1016/j.electacta.2015.05.163 Panda, P. K., & Grigoriev, A. (2020). Nanoscale Advances Progress in supercapacitors : roles of two dimensional nanotubular materials. 70–108. https://doi.org/10.1039/c9na00307j Peng, C., Yan, X. Bin, Wang, R. T., Lang, J. W., Ou, Y. J., & Xue, Q. J. (2013). Promising activated carbons derived from waste tea-leaves and their application in high performance supercapacitors electrodes. Electrochimica Acta, 87, 401–408. https://doi.org/10.1016/j.electacta.2012.09.082 Rudianto, B. (2011). Analisis Pengaruh Sebaran Ground Control Point Terhadap Ketelitian Objek Pada Peta Citra Hasil Ortorektifikasi. Jurnal Itenas Rekayasa, 15(1), 218798. Salanne, M., Rotenberg, B., Naoi, K., Kaneko, K., Taberna, P., Grey, C. P., Dunn, B., Simon, P., Salanne, M., Rotenberg, B., Naoi, K., Kaneko, K., & Taberna, P. (2017). Efficient storage mechanisms for building better supercapacitors To cite this version : HAL Id : hal-01480941. https://doi.org/10.1038/NENERGY.2016.70 Schmidt, J. (2019). Recent advances and applications of machine learning in solid- state materials science. Npj Computational Materials, July. https://doi.org/10.1038/s41524-019-0221-0 Singh, V., Joung, D., Zhai, L., Das, S., Khondaker, S. I., & Seal, S. (2011). Graphene based materials: Past, present and future. Progress in Materials Science, 56(8), 1178–1271. https://doi.org/10.1016/j.pmatsci.2011.03.003 Stankovich, S., Dikin, D. A., Dommett, G. H. B., Kohlhaas, K. M., Zimney, E. J., Stach, E. A., Piner, R. D., Nguyen, S. T., & Ruoff, R. S. (2006). Graphene-based composite materials. 442(July). https://doi.org/10.1038/nature04969 Tan, Y. Bin, & Lee, J. M. (2013). Graphene for supercapacitor applications. Journal of Materials Chemistry A, 1(47), 14814–14843. https://doi.org/10.1039/c3ta12193c Wang, C. H., Wen, W. C., Hsu, H. C., & Yao, B. Y. (2016). High-capacitance KOH-activated nitrogen-containing porous carbon material from waste coffee grounds in supercapacitor. Advanced Powder Technology, 27(4), 1387–1395. https://doi.org/10.1016/j.apt.2016.04.033 Zhang, S., Sui, L., Dong, H., He, W., Dong, L., & Yu, L. (2018). High-Performance Supercapacitor of Graphene Quantum Dots with Uniform Sizes. ACS Applied Materials and Interfaces, 10(15), 12983–12991. https://doi.org/10.1021/acsami.8b00323 Zhou, X., Wang, M., Lian, J., & Lian, Y. (2014). Supercapacitors based on high-surface-area graphene. Science China Technological Sciences, 57(2), 278–283. https://doi.org/10.1007/s11431-014-5462-z Zhu, Y., Hu, H., Li, W., & Zhang, X. (2007). Resorcinol-formaldehyde based porous carbon as an electrode material for supercapacitors. Carbon, 45(1), 160–165. https://doi.org/10.1016/j.carbon.2006.07.010

Refbacks

  • There are currently no refbacks.