Graphene as an Active Material for Supercapacitors: A Machine Learning Approach
Abstract
Graphene is a promising material for supercapacitors due to its unique properties, which influence the device's supercapacitor. This study aims to investigate the key factor of graphene properties in supercapacitors (, with the goal of improving their performance. Also, we observe the machine learning models for predicting capacitance of supercapacitor including four algorithms of machine learning: Linear Regression (LR), lazy IBK, Decision Table (DT), and Random Forest (RF). Machine learning model showed that the RF model demonstrated the highest correlation value of 0.745, surpassing other models. Also, the study revealed that graphene has a high specific surface area and highly porous structure, which enhanced the high capacitance values. Finally, these machine learning models are suitable to apply in materials sciences field for understanding the materials properties in supercapacitor.
Keywords
Full Text:
PDFReferences
Feng, S., & Lazkano, I. 2022. Innovation trends in electricity storage: What drives global innovation? Energy Policy, 167(November 2021), 113084.
Benoy, S. M., Pandey, M., Bhattacharjya, D., & Saikia, B. K. 2022. Recent trends in supercapacitor-battery hybrid energy storage devices based on carbon materials. J. Energy Storage, 52(PB), 104938.
Kelly-Holmes, H. 2016. Advertising as multilingual communication. Advertising as Multilingual Communication, 45, 1–206.
Mendis, N., Muttaqi, K. M., & Perera, S. 2012. Active Power Management of a Super capacitor-Battery Hybrid Energy Storage System for Standalone Operation of DFIG based Wind Turbines. 2012 IEEE Industry Applications Society Annual Meeting, Las Vegas, NV, USA.
Zhu, Y., Hu, H., Li, W., & Zhang, X. 2007. Resorcinol-formaldehyde based porous carbon as an electrode material for supercapacitors. Carbon, 45(1), 160–165.
Singh, V., Joung, D., Zhai, L., Das, S., Khondaker, S. I., & Seal, S. 2011. Graphene-based materials: Past, present, and future. Prog. Mater. Sci. 56(8), 1178–1271.
Tan, Y. Bin, & Lee, J. M. 2013. Graphene for supercapacitor applications. J. Mater. Chem. A, 1(47), 14814–14843.
Emiru, T. F., & Ayele, D. W. 2019. Controlled synthesis, characterization and reduction of graphene oxide : A convenient method for large scale production. Egypt. J. Basic Appl. Sci., 4(1), 74–79.
Gao, T., & Lu, W. (2021). iScience ll Machine learning toward advanced energy storage devices and systems. ISCIENCE, 24(1), 101936.
Kim, T., Jung, G., Yoo, S., Suh, K. S., & Ruoff, R. S. 2013. Activated graphene-based carbons as supercapacitor electrodes with macro- and mesopores. ACS Nano, 7(8), 6899–6905.
Jiang, X., Setodoi, S., Fukumoto, S., Imae, I., & Komaguchi, K. 2013. An easy one-step electrosynthesis of graphene/polyaniline composites and electrochemical capacitor. Carbon, 67, 662–672.
Ke, Q., & Wang, J. 2016. Graphene-based materials for supercapacitor electrodes: A review. J Materiomics, 2(1), 37–54.
Arshad, M. U., Dutta, D., Sin, Y. Y., Hsiao, S. W., Wu, C. Y., Chang, B. K., Dai, L., & Su, C. Y. 2022. Multi-functionalized fluorinated graphene composite coating for achieving durable electronics: Ultralow corrosion rate and high electrical insulating passivation. Carbon, 195, 141–153.
Stankovich, S., Dikin, D. A., Dommett, G. H. B., Kohlhaas, K. M., Zimney, E. J., Stach, E. A., Piner, R. D., Nguyen, S. T., & Ruoff, R. S. 2006. Graphene-based composite materials. Nature, 442(July), 282-286.
Zhang, S., Sui, L., Dong, H., He, W., Dong, L., & Yu, L. 2018. High-Performance Supercapacitor of Graphene Quantum Dots with Uniform Sizes. ACS Appl. Mater. Interfaces, 10(15), 12983–12991.
Lakshmi, J. V. N., & Sheshasaayee, A. 2016. Machine learning approaches on map reduce for Big Data analytics. Proceedings of the 2015 International Conference on Green Computing and Internet of Things, ICGCIoT 2015, 480–484.
Schmidt, J. 2019. Recent advances and applications of machine learning in solid-state materials science. NPJ Comput. Mater., 5, 83.
Eibe, F. 2011. Machine Learning with WEKA. Department of Computer Science, University of Waikato, New Zealand.
Karno, A. S. B. 2020. Prediksi Data Time Series Saham Bank BRI Dengan Mesin Belajar LSTM (Long ShortTerm Memory). J. Inf. Secur. Appl., 1(1), 1–8.
Rudianto, B. 2011. Analisis Pengaruh Sebaran Ground Control Point Terhadap Ketelitian Objek Pada Peta Citra Hasil Ortorektifikasi. Jurnal Itenas Rekayasa, 15(1), 218798.
Zhou, X., Wang, M., Lian, J., & Lian, Y. 2014. Supercapacitors based on high-surface-area graphene. Sci. China Technol. Sci., 57(2), 278–283.
Fevre, L. W. Le, Cao, J., Kinloch, I. A., & Forsyth, A. J. 2019. Systematic Comparison of Graphene Materials for Supercapacitor Electrodes. ChemistryOpen, 8, 418–428.
Salanne, M., Rotenberg, B., Naoi, K., Kaneko, K., Taberna, P., Grey, C. P., Dunn, B., Simon, P., Salanne, M., Rotenberg, B., Naoi, K., Kaneko, K., & Taberna, P. 2017. Efficient storage mechanisms for building better supercapacitors. Nat. Energy, 1, 1-10.
Ji, L., Meduri, P., Agubra, V., Xiao, X., & Alcoutlabi, M. 2016. Graphene-Based Nanocomposites for Energy Storage. Adv. Energy Mater., 6(16), 7–16.
Malard, L. M., Pimenta, M. A., Dresselhaus, G., & Dresselhaus, M. S. 2009. Raman spectroscopy in graphene. Phys. Rep., 473(5–6), 51–87.
Boyea, J. M., Camacho, R. E., Turano, S., & Ready, W. D. 2007. Carbon nanotube-based supercapacitors: technologies and markets. Nanotech. L. & Bus, 4(19).
Wang, C. H., Wen, W. C., Hsu, H. C., & Yao, B. Y. 2016. High-capacitance KOH-activated nitrogen-containing porous carbon material from waste coffee grounds in supercapacitor. Adv. Powder Technol., 27(4), 1387–1395.
Hardwick, L. J., Ruch, P. W., Hahn, M., Scheifele, W., Kötz, R., & Novák, P. 2008. In situ Raman spectroscopy of insertion electrodes for lithium-ion batteries and supercapacitors: First cycle effects. J. Phys. Chem. Solids, 69(5–6), 1232–1237.
Panda, P. K., Grigoriev, A., Mishra, Y. K., & Ahuja, R. 2020. Progress in supercapacitors: roles of two dimensional nanotubular materials. Nanoscale Adv., 2, 70-108.
Misnon, I. I., Zain, N. K. M., Aziz, R. A., Vidyadharan, B., & Jose, R. 2015. Electrochemical properties of carbon from oil palm kernel shell for high performance supercapacitors. Electrochim. Acta, 174(1), 78–86.
Peng, C., Yan, X. Bin, Wang, R. T., Lang, J. W., Ou, Y. J., & Xue, Q. J. 2013. Promising activated carbons derived from waste tea-leaves and their application in high performance supercapacitors electrodes. Electrochim. Acta, 87, 401–408.
Refbacks
- There are currently no refbacks.