Earthquake Disaster Risk Assessment in Purworejo District, Central Java Province, Indonesia

Chatarina Muryani, Sorja Koesuma, Pipit Wijayanti

Abstract

Purworejo Regency is directly adjacent to the Indian Ocean and is close to the Java subduction, so it is estimated to have a high earthquake risk index. This study aims to analyze the earthquake disaster risk in Purworejo District, Central Java Province, Indonesia. Earthquake risk analysis methods follow Perka BNPB No 02 of 2012, including hazard, vulnerability, and capacity analysis. The disaster risk index combines the disaster, vulnerability, and capacity indexes. The findings of this study reveal the following: (1) 295 villages within Purworejo Regency fall into the high earthquake hazard category, primarily located in the southern region of Purworejo or near the Java subduction zone. (2) The high vulnerability to earthquakes is widespread across almost all villages in Purworejo Regency. The highest concentration of villages with a high vulnerability index is found in Ngombol District (57 villages), Butuh District (41 villages), and Purwodadi District (40 villages). (3) Purworejo Regency exhibits a capacity to cope with earthquakes that are not categorized as low. The majority, comprising 464 villages (93.92%), falls within the middle class, while 30 villages (6.08%) are classified as having a high capacity. (4) Within Purworejo Regency, 117 villages (23.7%) are at a high risk of earthquakes, and 376 villages face a moderate risk. Only one village has a low disaster risk index.

Keywords

Earthquake; Risk; Hazard; Vulnerability; Capacity

Full Text:

PDF

References

Noegroho, N. (2020). Spatial plan based on disaster mitigation in the city of Mukomuko, Bengkulu. IOP Conference Series: Earth and Environmental Science, 426(1). https://doi.org/10.1088/1755-1315/426/1/012070 2. Sunardi, B. (2009). Analisa Fraktal Dan Rasio Slip Daerah Bali-Ntb Berdasarkan Pemetaan Variasi Parameter Tektonik. Jurnal Meteorologi Dan Geofisika, 10(1). https://doi.org/10.31172/jmg.v10i1.33 3. Irsyam, M., Sengara, I. W., Aldiamar, F., Widiyantoro, S., Triyoso, W., Natawidjaja, D. H., Kertapati, E., Meilano, I., Suhardjono, Asrurifak, M., & Ridwan, M. (2010). Hasil Studi Tim Revisi Peta Gempa Indonesia 2010. 4. Kementerian Energi dan Sumber Daya Mineral. (2023). Siaran Pers Nomor: 047.Pers/04/SJI/2023 Tanggal: 1 Februari 2023. https://www.esdm.go.id/id/media-center 5. EM-DAT. (2017). Emergency Events Database. www.emdat.be 6. Netrisa, Z., Syafriani, Triyono, R., & Arifin, H. (2018). Pemetaan Bahaya Gempabumi Deterministik dengan Pendekatan Peak Ground Acceleration ( PGA ) di Kota Padang. Pillar Of Physics, 11(2), 41–48. 7. UNISDR. (2017). Words into Action Guidelines: National Disaster Risk Assessment - Governance System, Methodologies, and Use of Results. UN Office for Disaster Risk Reduction, 303. https://www.undrr.org/publication/words-action-guidelines-national-disaster-risk-assessment 8. Noh, M. R. M., Rambat, S., Halim, I. S. B. A., & Ahmad, F. (2021). Seismic Risk Assessment in Malaysia: A Review. Journal of Advanced Research in Applied Sciences and Engineering Technology, 25(1), 69–79. https://doi.org/10.37934/araset.25.1.6979 9. UNISDR. (2017). Public communication for disaster risk reduction. In Words into Action Guidelines: National Disaster Risk Assessment Special Topics. 10. United Nations Office for Disaster Risk Reduction. (2015). Sendai Framework for Disaster Risk Reduction 2015 - 2030. 11. United Nations. (2015). Transforming our world: the 2030 Agenda for Sustainable Development. In General Assembly. https://doi.org/10.1163/15718093-12341375 12. Koulali, A., McClusky, S., Susilo, S., Leonard, Y., Cummins, P., Tregoning, P., Meilano, I., Efendi, J., & Wijanarto, A. B. (2017). The kinematics of crustal deformation in Java from GPS observations: Implications for fault slip partitioning. Earth and Planetary Science Letters, 458, 69–79. https://doi.org/10.1016/j.epsl.2016.10.039 13. Abercrombie, R. E., Antolik, M., Felzer, K., & Ekström, G. (2001). The 1994 Java tsunami earthquake: Slip over a subducting seamount. Journal of Geophysical Research, 106(B4), 6595–6607. 14. Yokoyama, I. (1981). A geophysical interpretation of the 1883 Krakatau eruption. Journal of Volcanology and Geothermal Research, 9(4), 359–378. https://doi.org/10.1016/0377-0273(81)90044-5 15. Eric S. Jones; Gavin P. Hayes; Melissa Bernardino; Fransiska K. Dannemann; Kevin P. Furlong; Harley M. Benz; and Antonio Villaseñor. (2014). Seismicity of the earth 1900–2012 Java and vicinity. 2010. https://doi.org/10.1029/2006GL028005.Bird 16. United States Geological Survey. (1921). M 7.6 - south of Java, Indonesia. 17. Meyers, R. A. (2002). Encyclopedia Of Physical Science and Technology. Academic Press. 18. Moya Rojas, P. (2016). Central and South America: Significant but constrained potential for geothermal power generation. In Geothermal Power Generation: Developments and Innovation. Elsevier Ltd. https://doi.org/10.1016/B978-0-08-100337-4.00023-1 19. Earthquake Research Committee (Japan). (2005). Report: ‘National Seismic Hazard Maps for Japan. 20. Midorikawa, S., Matsuoka, M., & Sakugawa, K. (1994). Site Effects on Strong-Motion Records Observed During the 1987 Chhiba-Ken-Toho-Oki, Japan Earthquake. Proc. 9th Japan Earthq. Eng. Symp., E-085 - E-090. 21. Badan Nasional Penanggulangan Bencana (BNPB). (2019). MODUL TEKNIS PENYUSUNAN KAJIAN RISIKO BENCANA GEMPABUMI. Direktorat Pengurangan Risiko Bencana Badan Nasional Penanggulangan Bencana. 22. Khomarudin, M. R. (2010). Tsunami Risk and Vulnerability: Remote Sensing and Gis Approaches for Surface Roughness Determination, Settlement Mapping and Population Distribution Modeling. 251. 23. PERKA BNPB No. 2 Tahun 2012 Tentang Pedoman Umum Pengkajian Risiko Bencana, Pub. L. No. 02 Tahun 2012 (2012). 24. Imamura, S., & Furuta, A. (2015). A practical method of nation wide Vs30 mapping with 250m grids for developing countries by automated topographical classification and published data in Japan. 2005, 157–161. https://doi.org/10.1190/segj122015-056 25. Irsyam, M., Asrurifak, M., Mikhail, R., Wahdiny, I. I., Rustiani, S., & Munirwansyah. (2017). Development of nationwide Vs30 map and calibrated conversion table for Indonesia using automated topographical classification. Journal of Engineering and Technological Sciences, 49(4), 457–471. https://doi.org/10.5614/j.eng.technol.sci.2017.49.4.3 26. Iwahashi, J., & Pike, R. J. (2007). Automated classifications of topography from DEMs by an unsupervised nested-means algorithm and a three-part geometric signature. Geomorphology, 86(3–4), 409–440. https://doi.org/10.1016/j.geomorph.2006.09.012 27. Patria, A., & Aulia, A. N. (2020). Structural And Earthquake Evaluations Along Java Subduction Zone, Indonesia. RISET Geologi Dan Pertambangan, 30(1), 65–79. https://doi.org/10.14203/risetgeotam2020.v30.1074 28. Hamilton, W. (1973). Tectonics of the Indonesian Region. Bulletin of the Geological Society of Malaysia, 6, 3–10. https://doi.org/10.7186/bgsm06197301 29. Hall, R. (2012). Late Jurassic-Cenozoic reconstructions of the Indonesian region and the Indian Ocean. Tectonophysics, 570–571, 1–41. https://doi.org/10.1016/j.tecto.2012.04.021 30. Simons, W. J. F., Socquet, A., Vigny, C., Ambrosius, B. A. C., Abu, S. H., Promthong, C., Subarya, C., Sarsito, D. A., Matheussen, S., Morgan, P., & Spakman, W. (2007). A decade of GPS in Southeast Asia: Resolving Sundaland motion and boundaries. Journal of Geophysical Research: Solid Earth, 112(6). https://doi.org/10.1029/2005JB003868 31. DeMets, C., Gordon, R. G., & Argus, D. F. (2010). Geologically current plate motions. Geophysical Journal International, 181(1), 1–80. https://doi.org/10.1111/j.1365-246X.2009.04491.x 32. Lynnes, C. S., & Lay, T. (1988). Source process of the great 1977 Sumba earthquake. Journal of Geophysical Research, 93(B11). https://doi.org/10.1029/jb093ib11p13407 33. Tsuji, Y., Imamura, F., Matsutomi, H., Synolakis, C. E., Nanang, P. T., Jumadi, Harada, S., Han, S. S., Arai, K., & Cook, B. (1995). Field survey of the East Java earthquake and tsunami of June 3, 1994. Pure and Applied Geophysics PAGEOPH, 144(3–4), 839–854. https://doi.org/10.1007/BF00874397 34. Fritz, H. M., Kongko, W., Moore, A., McAdoo, B., Goff, J., Harbitz, C., Uslu, B., Kalligeris, N., Suteja, D., Kalsum, K., Titov, V., Gusman, A., Latief, H., Santoso, E., Sujoko, S., Djulkarnaen, D., Sunendar, H., & Synolakis, C. (2007). Extreme run-up from the 17 July 2006 Java tsunami. Geophysical Research Letters, 34(12), 1–5. https://doi.org/10.1029/2007GL029404 35. Chen, Y., Li, G. P., Chen, Q. F., Chen, L., & Li, M. F. (1998). Earthquake damage and loss estimation with geographic information system. Acta Seismologica Sinica English Edition, 11(6), 751–758. https://doi.org/10.1007/s11589-998-0011-0 36. Mondal, M., Biswas, A., Haldar, S., Mandal, S., Mandal, P., Bhattacharya, S., & Paul, S. (2022). Climate change, multi-hazards and society: An empirical study on the coastal community of Indian Sundarban. Natural Hazards Research, 2(2), 84–96. https://doi.org/10.1016/j.nhres.2022.04.002 37. Shadmaan, M. S., & Popy, S. (2022). An assessment of earthquake vulnerability by multi-criteria decision-making method. Geohazard Mechanics, 1(1), 94–102. https://doi.org/10.1016/j.ghm.2022.11.002 38. International Strategy for Disaster Reduction. (2005). Hyogo framework for action 2005–2015 (Issue January 2005). https://doi.org/10.1007/978-1-4020-4399-4_180 39. International Strategy for Disaster Reduction. (2007). Words Into Action: A Guide for Implementing the Hyogo Framework. In United Nations (Vol. 16, Issue 7). https://doi.org/10.1080/00221473.1961.10622033 40. Sustainable Development Goals. (n.d.). Https://Www.Sdg2030indonesia.Org. 41. Ginige, K., Amaratunga, D., & Haigh, R. (2010). Developing capacities for disaster risk reduction in the built environment: Capacity analysis in Sri Lanka. International Journal of Strategic Property Management, 14(4), 287–303. https://doi.org/10.3846/ijspm.2010.22

Refbacks

  • There are currently no refbacks.