Photocurrent Density Enhancement of DSSC with Existence of ZnO in TiO2 Based Photoanode
Abstract
One of the important components of a dye-sensitized solar cell (DSSC) is photoanode which plays a critical role serving as the center of conversion energy. Photoanode consists of transparent conducting substrate, a semiconductor layer, and dyes molecules as sensitizers. Titanium dioxide (TiO2) is widely used as a photoanode because it is a mesoporous and stable material despite its high recombination rate. To reduce the recombination rate and improve electron transport, TiO2 is combined with other materials such as ZnO to form TiO2/ZnO composites. ZnO is a good choice because it has higher electron mobility than TiO2 to inhibit recombination. The synthesis process of TiO2/ZnO composites was carried out using the sol-gel method with variations in the weight percentage of ZnO. The TiO2/ZnO composite was then applied as a photoanode in DSSC. The J-V measurement results shows that the DSSC with TiO2/ZnO 25wt% composite layer as the photoanode produced the highest efficiency of 0.86%. This increase in efficiency was due to an increase in the photo-current of photoanodes that have more ZnO content. The presence of ZnO leads to faster-moving electron transport, therefore reducing recombination and increasing efficiency.
Keywords
Full Text:
PDFReferences
O’Regan, B. and Grätzel, M. 1991. A low cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films. Nature, 353, 737-740, DOI: 10.1038/353737a0.
Sharma, K., Sharma, V., & Sharma, S. S. 2018. Dye-Sensitized Solar Cells: Fundamentals and Current Status. Nanoscale Res. Lett., 13(381), 1-46, DOI: 10.1186/s11671-018-2760-6.
González-Verjan, V. A., Trujillo-Navarrete, B., Félix-Navarro, R. M., de León, J. N. D., Romo-Herrera, J. M., Calva-Yáñez, J. C., Hernández-Lizalde, J. M., and Reynoso-Soto, E. A. 2020. Effect of TiO2 particle and pore size on DSSC efficiency. Materials for Renewable and Sustainable Energy, 9(13), 1-8, DOI: 10.1007/s40243-020-00173-7.
Gan, Y. K., Zakaria, N. F., Mohamad, I. S., and Norizan, M. N. 2020. The effect of ZnO photoanode solution ageing to the performance of dye-sensitized solar cell (DSSC). AIP Conf. Proc., 2203, 020048, DOI: 10.1063/1.5142140.
Dimarco, B. N., Sampaio, R. N., James, E. M., Barr, T. J., Bennett, M. T., and Meyer, G. J. 2020. Efficiency Considerations for SnO2-Based Dye-Sensitized Solar Cells. ACS Appl. Mater. Interfaces, 12(21), 23923–23930, DOI: 10.1021/acsami.0c04117.
Gong, J., Sumathy, K., Qiao, Q., and Zhou, Z. 2017. Review on dye-sensitized solar cells (DSSCs): Advanced techniques and research trends. Renewable Sustainable Energy Rev., 68, 234–246, DOI: 10.1016/j.rser.2016.09.097.
Pan, M., Huang, N., Zhao, X., Fu, J., and Zhong, X. 2013. Enhanced efficiency of dye-sensitized solar cell by high surface area anatase-TiO2-modified P25 paste. J. Nanomater., 2013, 760685, DOI: 10.1155/2013/760685.
Ge, F., Xu, F., Gong, K., Liu, D., Li, W., Wang, L., and Zhou, X. 2022. Sensitizers designed toward efficient intramolecular charge separation for p-type dye-sensitized solar cells. Dyes and Pigments, 200, 110127, DOI: 10.1016/J.DYEPIG.2022.110127.
Nur Azella Zaine, S., Muti Mohamed, N., Khatani, M., Eskandar Samsudin, A., and Umair Shahid, M. 2020. Trap State and Charge Recombination in Nanocrystalline Passivized Conductive and Photoelectrode Interface of Dye-Sensitized Solar Cell. Coatings, 2020, 10(3), 284, DOI: 10.3390/coatings10030284.
Supriyanto, A., Saputri, D. G., Ahmad, M. K. Bin, Sutomo, A. D., and Ramelan, A. H. 2023. Influence of Coating a TiO2 Electrode with DN-F05 and DN-F05-Ag on the Photovoltaic Performance of DSSC Solar Cells. Appl. Sci., 13(13), 7459. DOI: 10.3390/app13137459.
Castrejón-Sánchez, V. H., López, R., Ramón-González, M., Enríquez-Pérez, Á., Camacho-López, M., and Villa-Sánchez, G. 2019. Annealing control on the anatase/rutile ratio of nanostructured titanium dioxide obtained by sol-gel. Crystals, 9(22), 1-12, DOI: 10.3390/cryst9010022.
Grätzel, M. 2001. Photoelectrochemical cells. Nature, 414, 338, DOI: 10.1038/35104607.
Mahalingam, S., and Abdullah, H. 2016. Electron transport study of indium oxide as photoanode in DSSCs: A review. Renewable Sustainable Energy Rev., 63, 245–255, DOI: 10.1016/j.rser.2016.05.067, DOI: 10.1016/j.rser.2016.05.067.
Yao, N., Huang, J., Fu, K., Deng, X., Ding, M., Zhang, S., Xu, X., and Li, L. 2016. Reduced interfacial recombination in dye-sensitized solar cells assisted with NiO:Eu3+,Tb3+ coated TiO2 film. Sci. Rep., 6, 31123, DOI: 10.1038/srep31123.
Ramya, M., Nideep, T. K., Nampoori, V. P. N., and Kailasnath, M. 2021. The impact of ZnO nanoparticle size on the performance of photoanodes in DSSC and QDSSC: a comparative study. J Mater Sci: Mater Electron, 32, 3167–3179, DOI: 10.1007/s10854-020-05065-0.
Kamarulzaman, N., Kasim, M.F., and Rusdi, R. Band Gap Narrowing and Widening of ZnO Nanostructures and Doped Materials. 2015. Nanoscale Res. Lett., 10, 346. DOI: 10.1186/s11671-015-1034-9.
Agrawal, A., Siddiqui, S. A., Soni, A., Sharma, G. D., and Shrivastava, D. R. 2020. ZnO nanoparticles based dye sensitized solar cell: Fabrication and characterization. AIP Conf. Proc., 2294, 030005, DOI: 10.1063/5.0031753.
Ramya, M., Nideep, T. K., Nampoori, V. P. N., and Kailasnath, M. 2021. Solvent assisted evolution and growth mechanism of zero to three dimensional ZnO nanostructures for dye sensitized solar cell applications. Sci. Rep., 11, 6159 DOI: 10.1038/s41598-021-85701-9.
Boro, B., Gogoi, B., Rajbongshi, B. M., and Ramchiary, A. 2018. Nano-structured TiO2/ZnO nanocomposite for dye-sensitized solar cells application: A review. Renewable Sustainable Energy Rev., 81, 2264–2270, DOI: 10.1016/j.rser.2017.06.035.
Thate, A.G., Pakhare, K.S., Patil, S.S., and Bhuse, V.M. 2023. Fabrication of TiO2-ZnO nanocomposite photoanodes to enhance the dye-sensitized solar cell efficiency. Res. Chem. Intermed., 49, 147–168 (2023). DOI: 10.1007/s11164-022-04878-4.
Deepa, H. A., Madhu, G. M., and Venkatesham, V. 2019. Performance evaluation of DSSC’s fabricated employing TiO2 and TiO2-ZnO nanocomposite as the photoanodes. Mater. Today: Proc., 46, 4579–4586. DOI: 10.1016/j.matpr.2020.09.711.
Rajkumar, N., Kanmani, S. S., and Ramachandran, K. 2011. Performance of dye-sensitized solar cell based on TiO2:ZnO nanocomposites. Adv. Sci. Lett., 4(2), 627–633. DOI: 10.1166/asl.2011.1265
Makuła, P., Pacia, M., and Macyk, W. 2018. How To Correctly Determine the Band Gap Energy of Modified Semiconductor Photocatalysts Based on UV-Vis Spectra. J. Phys. Chem. Lett., 9 (23) 6814–6817. DOI: 10.1021/acs.jpclett.8b02892.
Hadke, S., Huang, M., Chen, C., Tay, Y. F., Chen, S., Tang, J., and Wong, L. 2022. Emerging Chalcogenide Thin Films for Solar Energy Harvesting Devices. Chem. Rev., 122 (11), 10170–10265). DOI: 10.1021/acs.chemrev.1c00301.
Rani, M., and Tripathi, S. K. 2016. Electron transfer properties of organic dye sensitized ZnO and ZnO/TiO2 photoanode for dye sensitized solar cells. Renewable Sustainable Energy Rev., 61, 97–107, DOI: 10.1016/j.rser.2016.03.012.
Refbacks
- There are currently no refbacks.