The Effect of Tetraethil OrthoCilicate (TEOS) on Fe3O4 Nanoparticles Addition in Electrical

Indri Dayana, Habib Satria, Martha Rianna

Abstract

Magnetite Nanoparticles of pure (Fe3O4) and Fe3O4 with TEOS addition have been successfully synthesized from natural iron sand using the coprecipitation method. The purpose of this study is to provide information on the effect of TEOS to Fe3O4 on the electrical properties. The effect of TEOS addition to Fe3O4 indicates that the increase in true density results is 4.95 gr/cm3. The stability of nanolubricant on Fe3O4 nanoparticles with the addition of TEOS 1.2 ml was dispersed homogeneously. The value of thermal conductivity also increases due to TEOS addition on Fe3O4 nanoparticles in a volume fraction of 0.8% of 1,631 W/m.K and the heat of the type produced was 718.44 J/kg.K. The effect of TEOS addition on Fe3O4 nanoparticles produces good electrical properties of stability in the nano-lubricant.

Keywords

Fe3O4 nanoparticles, TEOS, thermal conductivity, electrical properties

Full Text:

PDF

References

1 Hui, C., Shen, C., Tian, J., Bao, L., Ding, H., Li, C., Tian, Y., Shi, X., & Gao, H. J. 2011. Core-shell Fe 3 O 4@ SiO 2 nanoparticles synthesized with well-dispersed hydrophilic Fe 3 O 4 seeds. Nanoscale, 3(2), 701-705.

2 Cowley, M. D. 1989. Ferrohydrodynamics. By RE ROSENSWEIG. Cambridge University Press, 1985. 344 pp.£ 45. Journal of Fluid Mechanics, 200, 597-599.

3 Tetuko, A. P., Shabani, B., & Andrews, J. 2016. Thermal coupling of PEM fuel cell and metal hydride hydrogen storage using heat pipes. International Journal Of Hydrogen Energy, 41(7), 4264-4277.

4 P. Tetuko, A., Shabani, B., & Andrews, J. 2018. Passive fuel cell heat recovery using heat pipes to enhance metal hydride canisters hydrogen discharge rate: An experimental simulation. Energies, 11(4), 915.

5 Xu, J. K., Zhang, F. F., Sun, J. J., Sheng, J., Wang, F., & Sun, M. 2014. Bio and nanomaterials based on Fe3O4. Molecules, 19(12), 21506-21528.

6 Sebayang, P., Kurniawan, C., Aryanto, D., Setiadi, E. A., Tamba, K., & Sudiro, T. 2018. Preparation of Fe3O4/bentonite nanocomposite from natural iron sand by co-precipitation method for adsorbents materials. In IOP Conference Series: Materials Science and Engineering, 316(1), 012053.

7 Setiadi, E. A., Amriani, F., & Sebayang, P. 2017. The evaluation of temperature in synthesizing process of natural iron sand based Fe3O4 nanoparticles for Ni ion adsorption. In AIP Conference Proceedings, 1904(1).

8 Rianna, M., Sembiring, T., Situmorang, M., Kurniawan, C., Tetuko, A. P., Setiadi, E. A., Priyadi, I., Ginting, M., & Sebayang, P. 2019. Effect of calcination temperature on Microstructures, magnetic properties, and microwave absorption on BaFe11. 6Mg0. 2Al0. 2O19 synthesized from natural iron sand. Case Studies in Thermal Engineering, 13, 100393.

9 Setiadi, E. A., Sebayang, P., Ginting, M., Sari, A. Y., Kurniawan, C., Saragih, C. S., & Simamora, P. 2016. The synthesization of Fe3O4 magnetic nanoparticles based on natural


iron sand by co-precipitation method for the used of the adsorption of Cu and Pb ions. In Journal of Physics: Conference Series, 776(1), 012020.

10 Setiadi, E. A., Simbolon, S., Yunus, M., Kurniawan, C., Tetuko, A. P., Zelviani, S., & Sebayang, P. 2018. The effect of synthesis temperature on physical and magnetic properties of manganese ferrite (MnFe2O4) based on natural iron sand. In Journal of Physics: Conference Series, Vol. 979(1), 012064.

11 Kurniawan, C., Eko, A. S., Ayu, Y. S., Sihite, P. T. A., Ginting, M., Simamora, P., & Sebayang, P. (2017, May). Synthesis and characterization of magnetic elastomer based PEG-coated Fe3O4 from natural iron sand. In IOP Conference Series: Materials Science and Engineering, 202(1), 012051.

12 Rianna, M., Sembiring, T., Situmorang, M., Kurniawan, C., Setiadi, E. A., Tetuko, A. P., ... & Sebayang, P. 2018. Characterization of natural iron sand from Kata Beach, West Sumatra with high energy milling (Hem). Jurnal Natural, 18(2), 97-100.

13 Zhang, X., Han, D., Hua, Z., & Yang, S. 2016. Porous Fe3O4 and gamma-Fe2O3 foams synthesized in air by sol-gel autocombustion. Journal of Alloys and Compounds, 684, 120-124.

14 Hariani, P. L., Faizal, M., & Setiabudidaya, D. 2013. Synthesis and properties of Fe3O4 nanoparticles by co-precipitation method to removal procion dye. International Journal of Environmental Science and Development, 4(3), 336.

15 Chen, H. J., Wang, Y. M., Qu, J. M., Hong, R. Y., & Li, H. Z. 2011. Preparation and characterization of silicon oil based ferrofluid. Applied surface science, 257(24), 10802-10807.

16 de Mendonça, E. S. D. T., de Faria, A. C. B., Dias, S. C. L., Aragón, F. F., Mantilla, J. C., Coaquira, J. A., & Dias, J. A. 2019. Effects of silica coating on the magnetic properties of magnetite nanoparticles. Surfaces and Interfaces, 14, 34-43.

17 Teresa, O. H., & Choi, C. K. 2010. Comparison between SiOC Thin Film by plasma enhance chemical vapor deposition and SiO2 Thin Film by Fourier Transform Infrared Spectroscopy. J. Korean Phys. Soc., 56(4), 1150–1155.

18 Jacintho, G. V., Brolo, A. G., Corio, P., Suarez, P. A., & Rubim, J. C. 2009. Structural investigation of MFe2O4 (M=Fe,Co) magnetic fluids. The journal of physical chemistry C, 113(18), 7684-7691.

19 Lebed, B. M., & Voronkov, V. D. 1996. State of the art millimeter and sub-millimeter wave ferrite components and devices. In 1996 26th European Microwave Conference, 2, 816-822.

20 Wu, S., Zhu, D., Li, X., Li, H., & Lei, J. 2009. Thermal energy storage behavior of Al2O3–H2O nanofluids. Thermochimica Acta, 483(1-2), 73-77.

21 Abareshi, M., Goharshadi, E. K., Zebarjad, S. M., Fadafan, H. K., & Youssefi, A. 2010. Fabrication, characterization and measurement of thermal conductivity of Fe3O4 nanofluids. Journal of Magnetism and Magnetic Materials, 322(24), 3895-3901.

22 Khan, I., Abro, K. A., Mirbhar, M. N., & Tlili, I. 2018. Thermal analysis in Stokes’ second problem of nanofluid: Applications in thermal engineering. Case studies in thermal engineering, 12, 271-275.

23 Masala, O., Hoffman, D., Sundaram, N., Page, K., Proffen, T., Lawes, G., & Seshadri, R. 2006. Preparation of magnetic spinel ferrite core/shell nanoparticles: Soft ferrites on hard ferrites and vice versa. Solid state sciences, 8(9), 1015-1022.

24 Das, S. K., Putra, N., Thiesen, P., & Roetzel, W. 2003. Temperature dependence of thermal conductivity enhancement for nanofluids. J. Heat Transfer, 125(4), 567-574.

25 Li, C. H., & Peterson, G. P. 2006. Experimental investigation of temperature and volume fraction variations on the effective thermal conductivity of nanoparticle suspensions (nanofluids). Journal of Applied physics, 99(8).

26 Zhou, L. P., Wang, B. X., Peng, X. F., Du, X. Z., & Yang, Y. P. 2010. On the specific heat capacity of CuO nanofluid. Advances in mechanical engineering, 2, 172085.

27 Rosengarten, G., Tetuko, A., Li, K. K., Wu, A., & Lamb, R. (2011, January). The effect of nano-structured surfaces on droplet impingement heat transfer. In ASME International Mechanical Engineering Congress and Exposition, 54921, 1029-1036.

Refbacks

  • There are currently no refbacks.