Literature Review−Effect of Additives and Post-Treatments on Corrosion Resistance and Mechanical Properties of Plasma Electrolytic Oxidation Products in Magnesium and Titanium
Abstract
Plasma Electrolytic Oxidation (PEO) is a method of converting metal surfaces into an oxide layer with the help of plasma to improve the surface mechanical properties and corrosion resistance of metals. A PEO layer of about 10-50 μm is obtained quickly from 1 second-10 minutes at a voltage range of 150-500 V with AC or DC mode. Characteristics of the outer layer of PEO have pores and cracks, while the inner layer is relatively denser. Cracks and pores reduce the corrosion resistance and mechanical properties of the coating. In this study, a literature search was carried out on the effect of adding additives and post-treatment on the characteristics of PEO coatings grown on magnesium (Mg) and titanium (Ti) metals for biomedical applications. Mg and Ti metals have opposite chemical properties; Mg is a reactive metal, while Ti is an inert metal. Comparing the behavior of the PEO process and the coating produced by the two different metals is absorbing and necessary to understand the fundamentals of the PEO process. The results of a literature search show that the addition of additives increases the growth rate of the coating so that the coating is thicker and more wear resistant. The hardness of the coating also increases due to the additive particles trapped in the oxide layer filling the micro pores so that the surface becomes denser and more homogeneous. Therefore, corrosion resistance also increases, as indicated by a decrease in corrosion current as measured by the polarization test and an increase in the impedance modulus as measured by the electrochemical impedance test (EIS). The post-alkali treatment allows for increased surface bioactivity, as indicated by the rise in the Ca/P ratio after immersion in a physiological solution.
Keywords
Full Text:
PDFReferences
Al Afghani, F., & Anawati, A. (2021). Plasma electrolytic oxidation of zircaloy-4 in a mixed alkaline electrolyte. Surface and Coatings Technology, 426(August), 127786. https://doi.org/10.1016/j.surfcoat.2021.127786 2. Aliasghari, S., Skeleton, P., & Thompson, G. E. (2014). Plasma electrolytic oxidation of titanium in a phosphate/silicate electrolyte and tribological performance of the coatings. Applied Surface Science, 316(1), 463–476. https://doi.org/10.1016/j.apsusc.2014.08.037 3. Anawati, A. (2021). Characteristics of magnesium phosphate coatings formed on AZ31 Mg alloy by plasma electrolytic oxidation with improved current efficiency. In SpringerReference. https://doi.org/10.1007/springerreference_11456 4. Anawati, A., & Gumelar, M. D. (2018). Characterization of coatings formed on AZX magnesium alloys by plasma electrolytic oxidation. AIP Conference Proceedings, 1964. https://doi.org/10.1063/1.5038302 5. Anawati, Asoh, H., & Ono, S. (2015). Enhanced uniformity of apatite coating on a PEO film formed on AZ31 Mg alloy by an alkali pretreatment. Surface and Coatings Technology, 272, 182–189. https://doi.org/10.1016/j.surfcoat.2015.04.007 6. Arrabal, R., Matykina, E., Viejo, F., Skeldon, P., Thompson, G. E., & Merino, M. C. (2008). AC plasma electrolytic oxidation of magnesium with zirconia nanoparticles. Applied Surface Science, 254(21), 6937–6942. https://doi.org/10.1016/j.apsusc.2008.04.100 7. Asoh, H., Asakura, K., & Hashimoto, H. (2020). Effect of alcohol addition on the structure and corrosion resistance of plasma electrolytic oxidation films formed on AZ31B magnesium alloy. RSC Advances, 10(15), 9026–9036. https://doi.org/10.1039/d0ra01154a 8. Bagheri, H., Aliofkhazraei, M., & Nabavi, H. F. (2017). Effect of Nanocrystallization on Discharge Behavior and Microstructure of Plasma Electrolytic Oxidation on AZ31B Alloy. Protection of Metals and Physical Chemistry of Surfaces, 53(6), 1028–1033. https://doi.org/10.1134/S2070205117060041 9. Bala Srinivasan, P., Blawert, C., & Dietzel, W. (2008). Effect of plasma electrolytic oxidation treatment on the corrosion and stress corrosion cracking behaviour of AM50 magnesium alloy. Materials Science and Engineering A, 494(1–2), 401–406. https://doi.org/10.1016/j.msea.2008.04.031 10. Bala Srinivasan, P., Liang, J., Blawert, C., Störmer, M., & Dietzel, W. (2009). Effect of current density on the microstructure and corrosion behaviour of plasma electrolytic oxidation treated AM50 magnesium alloy. Applied Surface Science, 255(7), 4212–4218. https://doi.org/10.1016/j.apsusc.2008.11.008 11. Branislav Hadzima 1, Daniel Kajánek 1,*, M. J. 2, , Juliána Drábiková 1, Matˇej Bˇrezina 3, Joseph Buhagiar 4, J. P. 1 and M. J. 1, & 1. (2020). PEO of AZ31 Mg Alloy: E ff ect of Electrolyte Phosphate Content and Current Density. 12. Chaharmahali, R., Fattah-alhosseini, A., & Babaei, K. (2021). Surface characterization and corrosion behavior of calcium phosphate (Ca-P) base composite layer on Mg and its alloys using plasma electrolytic oxidation (PEO): A review. Journal of Magnesium and Alloys, 9(1), 21–40. https://doi.org/10.1016/j.jma.2020.07.004 13. Daroonparvar, M., Yajid, M. A. M., Yusof, N. M., & Bakhsheshi-Rad, H. R. (2016). Preparation and corrosion resistance of a nanocomposite plasma electrolytic oxidation coating on Mg-1%Ca alloy formed in aluminate electrolyte containing titania nano-additives. Journal of Alloys and Compounds, 688, 841–857. https://doi.org/10.1016/j.jallcom.2016.07.081 14. Dehnavi, V., Binns, W. J., Noël, J. J., Shoesmith, D. W., & Luan, B. L. (2018). Growth behaviour of low-energy plasma electrolytic oxidation coatings on a magnesium alloy. Journal of Magnesium and Alloys, 6(3), 229–237. https://doi.org/10.1016/j.jma.2018.05.008 15. Duan, H., Yan, C., & Wang, F. (2007). Growth process of plasma electrolytic oxidation films formed on magnesium alloy AZ91D in silicate solution. Electrochimica Acta, 52(15), 5002–5009. https://doi.org/10.1016/j.electacta.2007.02.021 16. Engineering, B. (2012). Electrophoretic Deposition of Hydroxyapatite on Ti6Al4V. 17. Erakovic, S., Jankovic, A., Veljovic, D., Palcevskis, E., Mitric, M., Stevanovic, T., & Mis, V. (2012). Corrosion Stability and Bioactivity in Simulated Body Fluid of Silver / Hydroxyapatite and Silver / Hydroxyapatite / Lignin Coatings on Titanium Obtained by Electrophoretic Deposition. https://doi.org/10.1021/jp305252a 18. Fakhr Nabavi, H., & Aliofkhazraei, M. (2019). Morphology, composition and electrochemical properties of bioactive-TiO2/HA on CP-Ti and Ti6Al4V substrates fabricated by alkali treatment of hybrid plasma electrolytic oxidation process (estimation of porosity from EIS results). Surface and Coatings Technology, 375(May), 266–291. https://doi.org/10.1016/j.surfcoat.2019.07.032 19. Farshid, S., & Kharaziha, M. (2021). Micro and nano-enabled approaches to improve the performance of plasma electrolytic oxidation coated magnesium alloys. Journal of Magnesium and Alloys, 9(5), 1487–1504. https://doi.org/10.1016/j.jma.2020.11.004 20. Fattah-alhosseini, A., Molaei, M., & Babaei, K. (2020). The effects of nano- and micro-particles on properties of plasma electrolytic oxidation (PEO) coatings applied on titanium substrates: A review. Surfaces and Interfaces, 21(August), 100659. https://doi.org/10.1016/j.surfin.2020.100659 21. G. Rapheal. (2016). Effect of current density on the microstructure and corrosion properties of plasma electrolytic oxidation (PEO) coatings on AM50 Mg alloy produced in an electrolyte containing clay additives. In SpringerReference. https://doi.org/10.1007/springerreference_11456 22. Gnedenkov, S. V., Sinebryukhov, S. L., Mashtalyar, D. V., Imshinetskiy, I. M., Samokhin, A. V., & Tsvetkov, Y. V. (2015). Fabrication of coatings on the surface of magnesium alloy by plasma electrolytic oxidation using ZrO2 and SiO2 Nanoparticles. Journal of Nanomaterials, 2015. https://doi.org/10.1155/2015/154298 23. Hidayati, E., & Anawati, A. (2020). Characterization of microstructure and composition of plasma electrolytic oxide film formed on az31 mg alloy. Key Engineering Materials, 860 KEM, 213–217. https://doi.org/10.4028/www.scientific.net/KEM.860.213 24. Hui Tang, Wang, M., Zhu, B., & He, L. (2020). Growth Process and Dielectric Breakdown of Micro Arc Oxidation Coating on AZ31 Mg Alloy Pretreated by Alkali Treatment. Protection of Metals and Physical Chemistry of Surfaces, 56(1), 156–163. https://doi.org/10.1134/S2070205120010244 25. Hussein, R. . (2013). An investigation of ceramic coating growth mechanisms in plasma electrolytic oxidation (PEO) processing (p. 9). 26. Imshinetskiy, I. M., Gnedenkov, S. V., Sinebryukhov, S. L., Mashtalyar, D. V., Samokhin, A. V., & Tsvetkov, Y. V. (2014). Incorporation of zirconia and silica nanoparticles into PEO-coatings on magnesium alloys. Solid State Phenomena, 213, 125–130. https://doi.org/10.4028/www.scientific.net/SSP.213.125 27. Jambagi, S. C., & Malik, V. R. (2021). A Review on Surface Engineering Perspective of Metallic Implants for Orthopaedic Applications. Jom, 73(12), 4349–4364. https://doi.org/10.1007/s11837-021-04924-3 28. Joseph, J., Gallo, S. C., Catubig, R., Wang, K., Somers, A., Howlett, P., & Fabijanic, D. (2020). Formation of a corrosion-resistant coating on zinc by a duplex plasma electrolytic oxidation and conversion surface treatment. Surface and Coatings Technology, 395(March), 125918. https://doi.org/10.1016/j.surfcoat.2020.125918 29. Klimas, J., Łukaszewicz, A., Szota, M., & Szota, K. (2016). Characteristics of titanium Grade 2 and evaluation of corrosion resistance. 77(2), 65–71. 30. Kraus, T., Fischerauer, S., Treichler, S., Martinelli, E., Eichler, J., Myrissa, A., Zötsch, S., Uggowitzer, P. J., Löffler, J. F., & Weinberg, A. M. (2018). The influence of biodegradable magnesium implants on the growth plate. Acta Biomaterialia, 66, 109–117. https://doi.org/10.1016/j.actbio.2017.11.031 31. Krishtal, M. M., Ivashin, P. V., Polunin, A. V., & Borgardt, E. D. (2019). The effect of dispersity of silicon dioxide nanoparticles added to electrolyte on the composition and properties of oxide layers formed by plasma electrolytic oxidation on magnesium 9995A. Materials Letters, 241, 119–122. https://doi.org/10.1016/j.matlet.2019.01.080 32. Laleh, M., Kargar, F., & Sabour Rouhaghdam, A. (2011). Improvement in corrosion resistance of micro arc oxidation coating formed on AZ91D magnesium alloy via applying a nano-crystalline sol-gel layer. Journal of Sol-Gel Science and Technology, 59(2), 297–303. https://doi.org/10.1007/s10971-011-2499-3 33. Li, C. Y., Fan, X. L., Cui, L. Y., & Zeng, R. C. (2020). Corrosion resistance and electrical conductivity of a nano ATO-doped MAO/methyltrimethoxysilane composite coating on magnesium alloy AZ31. Corrosion Science, 168(September 2019), 108570. https://doi.org/10.1016/j.corsci.2020.108570 34. Li, J., Cai, H., Xue, X., & Jiang, B. (2010). The outward-inward growth behavior of microarc oxidation coatings in phosphate and silicate solution. Materials Letters, 64(19), 2102–2104. https://doi.org/10.1016/j.matlet.2010.06.053 35. Li, Z., Ren, Q., Wang, X., Kuang, Q., Ji, D., Yuan, R., & Jing, X. (2019). Effect of phosphate additive on the morphology and anti-corrosion performance of plasma electrolytic oxidation coatings on magnesium―lithium alloy. Corrosion Science, 157(May), 295–304. https://doi.org/10.1016/j.corsci.2019.06.005 36. Liang, J., Srinivasan, P. B., Blawert, C., Störmer, M., & Dietzel, W. (2009). Electrochemical corrosion behaviour of plasma electrolytic oxidation coatings on AM50 magnesium alloy formed in silicate and phosphate based electrolytes. Electrochimica Acta, 54(14), 3842–3850. https://doi.org/10.1016/j.electacta.2009.02.004 37. Liu, C., Lu, X., Li, Y., Chen, Q., Zhang, T., & Wang, F. (2021). Influence of post-treatment process on corrosion and wear properties of PEO coatings on AM50 Mg alloy. Journal of Alloys and Compounds, 870, 159462. https://doi.org/10.1016/j.jallcom.2021.159462 38. Lou, B. S., Lee, J. W., Tseng, C. M., Lin, Y. Y., & Yen, C. A. (2018). Mechanical property and corrosion resistance evaluation of AZ31 magnesium alloys by plasma electrolytic oxidation treatment: Effect of MoS2 particle addition. Surface and Coatings Technology, 350(December 2017), 813–822. https://doi.org/10.1016/j.surfcoat.2018.04.044 39. Lou, B. S., Lin, Y. Y., Tseng, C. M., Lu, Y. C., Duh, J. G., & Lee, J. W. (2017). Plasma electrolytic oxidation coatings on AZ31 magnesium alloys with Si3N4 nanoparticle additives. Surface and Coatings Technology, 332, 358–367. https://doi.org/10.1016/j.surfcoat.2017.05.094 40. Lu, X., Blawert, C., Huang, Y., Ovri, H., Zheludkevich, M. L., & Kainer, K. U. (2016). Plasma electrolytic oxidation coatings on Mg alloy with addition of SiO2 particles. Electrochimica Acta, 187, 20–33. https://doi.org/10.1016/j.electacta.2015.11.033 41. Lu, X., Chen, Y., Blawert, C., Li, Y., Zhang, T., Wang, F., Kainer, K. U., & Zheludkevich, M. (2018). Influence of SiO2 particles on the corrosion and wear resistance of plasma electrolytic oxidation-coated AM50 Mg alloy. Coatings, 8(9). https://doi.org/10.3390/COATINGS8090306 42. Ma, X., Blawert, C., Höche, D., Kainer, K. U., & Zheludkevich, M. L. (2017). A model describing the growth of a PEO coating on AM50 Mg alloy under constant voltage mode. Electrochimica Acta, 251, 461–474. https://doi.org/10.1016/j.electacta.2017.08.147 43. Malayoglu, U. (n.d.). Influence of post-treatment on the corrosion resistance of PEO coated Am50B and AM60B Mg alloys. 44. Malinovschi, V., Marin, A. H., Ducu, C., Moga, S., Andrei, V., Coaca, E., Craciun, V., Lungu, M., & Lungu, C. P. (2022). Improvement of Mechanical and Corrosion Properties of Commercially Pure Titanium Using Alumina PEO Coatings. 45. Manufacturing, A. (2010). Arcam. Europe, 1–19. 46. Mashtalyar, D. V., Imshinetsky, I. M., & Sinebryukhov, S. L. (2017). Formation and properties of composite nanostructured PEO-coatings on metals and alloys. MATEC Web of Conferences, 129, 1–5. https://doi.org/10.1051/matecconf/201712902033 47. Mehri Ghahfarokhi, N., Shayegh Broujeny, B., Hakimizad, A., & Doostmohammadi, A. (2022). Plasma electrolytic oxidation (PEO) coating to enhance in vitro corrosion resistance of AZ91 magnesium alloy coated with polydimethylsiloxane (PDMS). Applied Physics A: Materials Science and Processing, 128(2), 1–13. https://doi.org/10.1007/s00339-021-05239-5 48. Mingo, B., Arrabal, R., Mohedano, M., Llamazares, Y., Matykina, E., Yerokhin, A., & Pardo, A. (2018). Influence of sealing post-treatments on the corrosion resistance of PEO coated AZ91 magnesium alloy. Applied Surface Science, 433, 653–667. https://doi.org/10.1016/j.apsusc.2017.10.083 49. Mohedano, M., Arrabal, R., Mingo, B., Pardo, A., & Matykina, E. (2018). Role of particle type and concentration on characteristics of PEO coatings on AM50 magnesium alloy. Surface and Coatings Technology, 334(September 2017), 328–335. https://doi.org/10.1016/j.surfcoat.2017.11.058 50. Molaei, M., Babaei, K., & Fattah-alhosseini, A. (2021). Improving the wear resistance of plasma electrolytic oxidation (PEO) coatings applied on Mg and its alloys under the addition of nano- and micro-sized additives into the electrolytes: A review. Journal of Magnesium and Alloys, 9(4), 1164–1186. https://doi.org/10.1016/j.jma.2020.11.016 51. Molaei, M., Fattah-Alhosseini, A., & Gashti, S. O. (2018). Sodium Aluminate Concentration Effects on Microstructure and Corrosion Behavior of the Plasma Electrolytic Oxidation Coatings on Pure Titanium. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 49(1), 368–375. https://doi.org/10.1007/s11661-017-4405-2 52. Molaei, M., Fattah-alhosseini, A., Nouri, M., Mahmoodi, P., Navard, S. H., & Nourian, A. (2022). Enhancing cytocompatibility, antibacterial activity and corrosion resistance of PEO coatings on titanium using incorporated ZrO2 nanoparticles. Surfaces and Interfaces, 30(February), 101967. https://doi.org/10.1016/j.surfin.2022.101967 53. Molaei, M., Fattah-alhosseini, A., Nouri, M., Mahmoodi, P., & Nourian, A. (2022). Incorporating TiO2 nanoparticles to enhance corrosion resistance, cytocompatibility, and antibacterial properties of PEO ceramic coatings on titanium. Ceramics International, 48(14), 21005–21024. https://doi.org/10.1016/j.ceramint.2022.04.096 54. Moon, S., Arrabal, R., & Matykina, E. (2015). 3-Dimensional structures of open-pores in PEO films on AZ31 Mg alloy. Materials Letters, 161, 439–441. https://doi.org/10.1016/j.matlet.2015.08.149 55. Narayanan, T. S. N. S., & Lee, M. H. (2016). A simple strategy to modify the porous structure of plasma electrolytic oxidation coatings on magnesium. RSC Advances, 6(19), 16100–16114. https://doi.org/10.1039/c5ra20647b 56. Nasiri Vatan, H., Ebrahimi-Kahrizsangi, R., & Kasiri-Asgarani, M. (2016). Structural, tribological and electrochemical behavior of SiC nanocomposite oxide coatings fabricated by plasma electrolytic oxidation (PEO) on AZ31 magnesium alloy. Journal of Alloys and Compounds, 683, 241–255. https://doi.org/10.1016/j.jallcom.2016.05.096 57. Parichehr, R., Dehghanian, C., & Nikbakht, A. (2021). Preparation of PEO/silane composite coating on AZ31 magnesium alloy and investigation of its properties. Journal of Alloys and Compounds, 876, 159995. https://doi.org/10.1016/j.jallcom.2021.159995 58. Park, J., Seo, E., Lee, M., & Kim, D. (2022). Fabrication of a CuO composite PEO and effect of post-treatment on improving its thermal properties and corrosion resistance of magnesium alloy AZ31. Surface and Coatings Technology, 447(July), 128828. https://doi.org/10.1016/j.surfcoat.2022.128828 59. PEZZATO, L., ANGELINI, V., BRUNELLI, K., MARTINI, C., & DABALÀ, M. (2018). Tribological and corrosion behavior of PEO coatings with graphite nanoparticles on AZ91 and AZ80 magnesium alloys. Transactions of Nonferrous Metals Society of China (English Edition), 28(2), 259–272. https://doi.org/10.1016/S1003-6326(18)64659-X 60. Phuong, N. Van, Fazal, B. R., & Moon, S. (2017). Cerium- and phosphate-based sealing treatments of PEO coated AZ31 Mg alloy. Surface and Coatings Technology, 309, 86–95. https://doi.org/10.1016/j.surfcoat.2016.11.055 61. Rahman, F. A. (2021). Karakteristik Coating Hasil Plasma Electrolytic Oxidation Pada Paduan Magnesium AZ31B : Pengaruh Rapat Arus Dan Waktu. Skripsi, 80. 62. Rahmati, M., Raeissi, K., Toroghinejad, M. R., Hakimizad, A., & Santamaria, M. (2020). The multi-effects of K2TiF6 additive on the properties of PEO coatings on AZ31 Mg alloy. Surface and Coatings Technology, 402(August), 126296. https://doi.org/10.1016/j.surfcoat.2020.126296 63. Rakoch, A. G., Monakhova, E. P., Khabibullina, Z. V., Serdechnova, M., Blawert, C., Zheludkevich, M. L., & Gladkova, A. A. (2020). Plasma electrolytic oxidation of AZ31 and AZ91 magnesium alloys: Comparison of coatings formation mechanism. Journal of Magnesium and Alloys, 8(3), 587–600. https://doi.org/10.1016/j.jma.2020.06.002 64. Roknian, M., Fattah-alhosseini, A., Gashti, S. O., & Keshavarz, M. K. (2018). Study of the effect of ZnO nanoparticles addition to PEO coatings on pure titanium substrate: Microstructural analysis, antibacterial effect and corrosion behavior of coatings in Ringer’s physiological solution. Journal of Alloys and Compounds, 740, 330–345. https://doi.org/10.1016/j.jallcom.2017.12.366 65. Santos-Coquillat, A., Martínez-Campos, E., Mora Sánchez, H., Moreno, L., Arrabal, R., Mohedano, M., Gallardo, A., Rodríguez-Hernández, J., & Matykina, E. (2021). Hybrid functionalized coatings on Metallic Biomaterials for Tissue Engineering. Surface and Coatings Technology, 422(July). https://doi.org/10.1016/j.surfcoat.2021.127508 66. Sarbishei, S., Faghihi Sani, M. A., & Mohammadi, M. R. (2014). Study plasma electrolytic oxidation process and characterization of coatings formed in an alumina nanoparticle suspension. Vacuum, 108, 12–19. https://doi.org/10.1016/j.vacuum.2014.05.008 67. Sarbishei, S., Faghihi Sani, M. A., & Mohammadi, M. R. (2016). Effects of alumina nanoparticles concentration on microstructure and corrosion behavior of coatings formed on titanium substrate via PEO process. Ceramics International, 42(7), 8789–8797. https://doi.org/10.1016/j.ceramint.2016.02.120 68. Sharifi, H., Aliofkhazraei, M., Darband, G. B., & Rouhaghdam, A. S. (2016). Characterization of PEO nanocomposite coatings on titanium formed in electrolyte containing atenolol. Surface and Coatings Technology, 304, 438–449. https://doi.org/10.1016/j.surfcoat.2016.07.048 69. Shen, M. J., Wang, X. J., & Zhang, M. F. (2012). High-compactness coating grown by plasma electrolytic oxidation on AZ31 magnesium alloy in the solution of silicate-borax. Applied Surface Science, 259, 362–366. https://doi.org/10.1016/j.apsusc.2012.07.052 70. Sikdar, S., Menezes, P. V., Maccione, R., Jacob, T., & Menezes, P. L. (2021). Plasma electrolytic oxidation (Peo) process—processing, properties, and applications. Nanomaterials, 11(6). https://doi.org/10.3390/nano11061375 71. Simchen, F., Sieber, M., Kopp, A., & Lampke, T. (2020). Introduction to plasma electrolytic oxidation-an overview of the process and applications. Coatings, 10(7). https://doi.org/10.3390/coatings10070628 72. Sreekanth, D., Rameshbabu, N., & Venkateswarlu, K. (2012). Effect of various additives on morphology and corrosion behavior of ceramic coatings developed on AZ31 magnesium alloy by plasma electrolytic oxidation. Ceramics International, 38(6), 4607–4615. https://doi.org/10.1016/j.ceramint.2012.02.040 73. Tian, P., Liu, X., & Ding, C. (2015). In vitro degradation behavior and cytocompatibility of biodegradable AZ31 alloy with PEO/HT composite coating. Colloids and Surfaces B: Biointerfaces, 128, 44–54. https://doi.org/10.1016/j.colsurfb.2015.02.011 74. Tian, P., Peng, F., Wang, D., & Liu, X. (2017). Corrosion behavior and cytocompatibility of fluoride-incorporated plasma electrolytic oxidation coating on biodegradable AZ31 alloy. Regenerative Biomaterials, 4(1), 1–10. https://doi.org/10.1093/rb/rbw036 75. Toorani, M., Aliofkhazraei, M., Mahdavian, M., & Naderi, R. (2021). Superior corrosion protection and adhesion strength of epoxy coating applied on AZ31 magnesium alloy pre-treated by PEO/Silane with inorganic and organic corrosion inhibitors. Corrosion Science, 178(September 2020), 109065. https://doi.org/10.1016/j.corsci.2020.109065 76. Toulabifard, A., Rahmati, M., Raeissi, K., & Hakimizad, A. (2020). coatings The E ff ect of Electrolytic Solution Composition on the Structure , Corrosion , and Wear Resistance of PEO. 1–20. 77. Tsakiris, V., Tardei, C., & Clicinschi, F. M. (2021). Biodegradable Mg alloys for orthopedic implants – A review. Journal of Magnesium and Alloys, 9(6), 1884–1905. https://doi.org/10.1016/j.jma.2021.06.024 78. Vasilyeva, M. S., Rudnev, V. S., & Kuryavyi, V. G. (2019). The Effect of Acetonitrile Additives to Tetraborate Electrolyte on the Composition and Morphology of PEO Layers on Titanium. 55(3), 473–480. https://doi.org/10.1134/S2070205119030262 79. Wan, P., Tan, L., & Yang, K. (2016). Surface Modification on Biodegradable Magnesium Alloys as Orthopedic Implant Materials to Improve the Bio-adaptability: A Review. Journal of Materials Science and Technology, 32(9), 827–834. https://doi.org/10.1016/j.jmst.2016.05.003 80. Wang, S., Wang, Y., Cao, G., Chen, J., Zou, Y., Yang, B., Ouyang, J., Jia, D., & Zhou, Y. (2021). Highly reliable double-layer coatings on magnesium alloy surfaces for robust superhydrophobicity, chemical durability and electrical property. Ceramics International, 47(24), 35037–35047. https://doi.org/10.1016/j.ceramint.2021.09.045 81. Wang, S. Y., Si, N. C., Xia, Y. P., & Liu, L. (2015). Influence of nano-SiC on microstructure and property of MAO coating formed on AZ91D magnesium alloy. Transactions of Nonferrous Metals Society of China (English Edition), 25(6), 1926–1934. https://doi.org/10.1016/S1003-6326(15)63800-6 82. Wang, Y., Lu, D., Wu, G., Chen, K., Wu, H., Zhang, Q., & Yao, J. (2020). Effect of laser surface remelting pretreatment with different energy density on MAO bioceramic coating. Surface and Coatings Technology, 393(January), 125815. https://doi.org/10.1016/j.surfcoat.2020.125815 83. WEI, B. jian, CHENG, Y. lin, LIU, Y. yuan, ZHU, Z. da, & CHENG, Y. liang. (2021). Corrosion and wear resistance of AZ31 Mg alloy treated by duplex process of magnetron sputtering and plasma electrolytic oxidation. Transactions of Nonferrous Metals Society of China (English Edition), 31(8), 2287–2306. https://doi.org/10.1016/S1003-6326(21)65655-8 84. Wheeler, J. M., Curran, J. A., & Shrestha, S. (2012). Microstructure and multi-scale mechanical behavior of hard anodized and plasma electrolytic oxidation (PEO) coatings on aluminum alloy 5052. Surface and Coatings Technology, 207, 480–488. https://doi.org/10.1016/j.surfcoat.2012.07.056 85. Wierzbicka, E. (2021). Flash-PEO as an alternative to chromate conversion coatings for corrosion protection of Mg alloy. 86. Witte, F. (2015). Reprint of: The history of biodegradable magnesium implants: A review. Acta Biomaterialia, 23(S), S28–S40. https://doi.org/10.1016/j.actbio.2015.07.017 87. Xiong, Y., Yang, Z., Hu, X., & Song, R. (2019). Bioceramic Coating Produced on AZ80 Magnesium Alloy by One-Step Microarc Oxidation Process. Journal of Materials Engineering and Performance, 28(3), 1691–1699. https://doi.org/10.1007/s11665-019-03925-3 88. Xu, G., & Shen, X. (2019). Fabrication of SiO 2 nanoparticles incorporated coating onto titanium substrates by the micro arc oxidation to improve the wear resistance. Surface and Coatings Technology, 364(January), 180–186. https://doi.org/10.1016/j.surfcoat.2019.01.069 89. Yagi, S., Sengoku, A., Kubota, K., & Matsubara, E. (2012). Surface modification of ACM522 magnesium alloy by plasma electrolytic oxidation in phosphate electrolyte. Corrosion Science, 57, 74–80. https://doi.org/10.1016/j.corsci.2011.12.032 90. Yang, W., Li, Q., Liu, C., Liang, J., Peng, Z., & Liu, B. (2018). A comparative study of characterisation of plasma electrolytic oxidation coatings on carbon steel prepared from aluminate and silicate electrolytes. Surface Engineering, 34(1), 54–62. https://doi.org/10.1080/02670844.2017.1320862 91. Yao, Z. P., Wang, D. L., Xia, Q. X., Zhang, Y. J., Jiang, Z. H., & Wang, F. P. (2012). Effect of PEO power modes on structure and corrosion resistance of ceramic coatings on AZ91D Mg alloy. Surface Engineering, 28(2), 96–101. https://doi.org/10.1179/1743294411Y.0000000045 92. Yu, L., Cao, J., & Cheng, Y. (2015a). An improvement of the wear and corrosion resistances of AZ31 magnesium alloy by plasma electrolytic oxidation in a silicate-hexametaphosphate electrolyte with the suspension of SiC nanoparticles. Surface and Coatings Technology, 276, 266–278. https://doi.org/10.1016/j.surfcoat.2015.07.014 93. Yu, L., Cao, J., & Cheng, Y. (2015b). An improvement of the wear and corrosion resistances of AZ31 magnesium alloy by plasma electrolytic oxidation in a silicate-hexametaphosphate electrolyte with the suspension of SiC nanoparticles. Surface and Coatings Technology, 276, 266–278. https://doi.org/10.1016/j.surfcoat.2015.07.014 94. Zeng, D., Liu, Z., Bai, S., & Wang, J. (2019). Influence of Sealing Treatment on the Corrosion Resistance of PEO Coated Al-Zn-Mg-Cu Alloy in Various Environments. Coatings, 9(12). https://doi.org/10.3390/coatings9120867 95. Zhang, Y., Chen, F., Zhang, Y., & Du, C. (2020). 1Influence of graphene oxide additive on the tribological and electrochemical corrosion properties of a PEO coating prepared on AZ31 magnesium alloy. Tribology International, 146(December 2019), 106135. https://doi.org/10.1016/j.triboint.2019.106135 96. Zhuang, J. J., Song, R. G., Xiang, N., Xiong, Y., & Hu, Q. (2017). Effect of current density on microstructure and properties of PEO ceramic coatings on magnesium alloy. Surface Engineering, 33(10), 744–752. https://doi.org/10.1080/02670844.2016.1190123
Refbacks
- There are currently no refbacks.