Review of Electrical Parameters Influence on Characteristics of Plasma Electrolytic Oxide Coating on Zircaloy

Fajar Al Afghani, Anawati Anawati

Abstract

Zircaloy-4 (Zr-4) is used as a fuel cladding material in Pressurized Water Reactor (PWR). Zr-4 as a cladding material works in extreme conditions in pressurized water up to 150 atm at 325 ˚C. In addition, the refuelling process in the reactor requires surface protection of the clay material to minimize corrosion and wear. One of the raising methods to enhance the corrosion resistance of the Zr-4 is by plasma electrolytic oxidation (PEO). Characteristics of the ceramic oxide layer produced by PEO are influenced by current density, type and composition of the electrolyte, and voltage mode. One of the challenges in the PEO development on the Zr-4 substrate is a high porosity with a range of 5%-20% and the low number (below 6%) of t-ZrO2 phases in the inner and outer layers. Optimizing the electrical parameters is necessary to overcome this problem. The results of the literature study show that the cathodic current at the AC voltage plays an important role in determining the resulting plasma characteristics. Low duty cycle (cathodic current> 50%) produce plasma with high density, resulting in a low porosity layer. Oppositely, high duty cycle (cathodic current <50%) produced high content of t-ZrO2 increase the mechanical resistance. Two-step PEO is beneficial in combining the low and high duty cycle to obtain the benefit of each step. 

Keywords

zircaloy-4; kelongsong; PWR; plasma electrolytic oxidation; mode AC

Full Text:

PDF

References

1 International Atomic Energy Agency. 2021. World Nuclear Performance Report 2021 (Report No. 2021/003).

2 Allen, T. R., Konings, R. J. M., Motta, A. T., & Couet, A. 2020. Corrosion of zirconium alloys. In R. J. M. Konings & R. E. B. T.-C. N. M. (Eds.), Comprehensive nuclear materials (2nd ed., pp. 64–95). Elsevier.

3 Young, G. A., Hackett, M. J., Tucker, J. D., & Capobianco, T. E. 2020. Welds for nuclear systems. In R. J. M. Konings & R. E. B. T.-C. N. M. (Eds.), Comprehensive nuclear materials (2nd ed., pp. 517–544). Elsevier.

4 Onimus, F., Doriot, S., & Béchade, J.-L. 2020. Radiation effects in zirconium alloys. In R. J. M. Konings & R. E. B. T.-C. N. M. (Eds.), Comprehensive nuclear materials (2nd ed., pp. 1–56). Elsevier.

5 Yang, M., Gao, Y., & Wang, H. 2020. Effect of Zn(CH₃COO)₂ addition on corrosion of Zirlo alloy in simulated PWR primary loop medium with LiOH and H₃BO₃. Journal of the Chinese Society for Corrosion and Protection, 40(2), 199–204.

6 Suman, S. 2019. Burst criterion for Indian PHWR fuel cladding under simulated loss-of-coolant accident. Nuclear Engineering and Technology, 51(6), 1525–1531.

7 Kaufholz, P., Stuke, M., Boldt, F., & Péridis, M. 2018. Influence of kinetic effects on terminal solid solubility of hydrogen in zirconium alloys. Journal of Nuclear Materials, 510, 277–281.

8 Luscher, W. G., Gilbert, E. R., Pitman, S. G., & Love, E. F. 2013. Surface modification of Zircaloy-4 substrates with nickel zirconium intermetallics. Journal of Nuclear Materials, 433(1–3), 514–522.

9 Umretiya, R. V., Elward, B., Lee, D., Anderson, M., Rebak, R. B., & Rojas, J. V. 2020. Mechanical and chemical properties of PVD and cold spray Cr-coatings on Zircaloy-4. Journal of Nuclear Materials, 541, 50–65.

10 Diniasi, D., Golgovici, F., Anghel, A., Fulger, M., Surdu-Bob, C. C., & Demetrescu, I. 2021. Corrosion behavior of chromium-coated Zy-4 cladding under CANDU primary circuit conditions. Coatings, 11(11), 1417.


11 Mengesha, G. A., Chu, J. P., Lou, B. S., & Lee, J. W. 2020. Effects of processing parameters on the corrosion performance of plasma electrolytic oxidation grown oxide on commercially pure aluminum. Metals, 10(3), 1–21.

12 Cheng, Y., Wang, T., Li, S., Cheng, Y., Cao, J., & Xie, H. 2017. The effects of anion deposition and negative pulse on the behaviours of plasma electrolytic oxidation (PEO)—A systematic study of the PEO of a Zirlo alloy in aluminate electrolytes. Electrochimica Acta, 225, 47–68.

13 Malayoğlu, U., Tekin, K. C., Malayoğlu, U., & Belevi, M. 2020. Mechanical and electrochemical properties of PEO coatings on zirconium alloy. Surface Engineering, 36(8), 800–808.

14 Ramrakhiani, L., Ghosh, S., & Majumdar, S. 2022. Heavy metal recovery from electroplating effluent using adsorption by jute waste-derived biochar for soil amendment and plant micro-fertilizer. Clean Technologies and Environmental Policy, 24(4), 1261–1284.

15 Latchford, I., Riposan, A., Kudriavtsev, V., Bluck, T., & Smith, C. 2015. Cost of ownership analysis for a high productivity thin film PVD system. In Society of Vacuum Coaters 57th Annual Technical Conference Proceedings (Vol. 57, pp. 516–519).

16 Bao, W., Xue, J., Liu, J. X., Wang, X., Gu, Y., Xu, F., & Zhang, G. J. 2018. Coating SiC on Zircaloy-4 by magnetron sputtering at room temperature. Journal of Alloys and Compounds, 730, 81-87.Agureev,

17 Agureev, L., Savushkina, S., Ashmarin, A., Borisov, A., Apelfeld, A., Anikin, K., ... & Bogdashkina, N. 2018. Study of plasma electrolytic oxidation coatings on aluminum composites. Metals, 8(6), 459..

18 Huang, X. 2019. Plasma electrolytic oxidation coatings on aluminum alloys: Microstructures, properties, and applications. Modern Concepts in Material Science, 2(1).

19 Jadhav, P., Bongale, A., & Kumar, S. 2021. A review of process characteristics of plasma electrolytic oxidation of aluminium alloy. Journal of Physics: Conference Series, 1854(1).

20 Dehnavi, V., Shoesmith, D. W., Luan, B. L., Yari, M., Liu, X. Y., & Rohani, S. 2015. Corrosion properties of plasma electrolytic oxidation coatings on an aluminium alloy - The effect of the PEO process stage. Materials Chemistry and Physics, 161, 49–58.

21 Lu, C., Ding, J., Shi, P., Jia, J., Xie, E., & Sun, Y. 2022. Effects of texture density on the tribological properties of plasma electrolytic oxidation/polytetrafluoroethylene coatings formed on aluminum alloys. Macromolecular Materials and Engineering, 307(2), 2100678.

22 Anawati, A., Asoh, H., & Ono, S. 2017. Effects of alloying element Ca on the corrosion behavior and bioactivity of anodic films formed on AM60 Mg alloys. Materials, 10(1).

23 Anawati, A., Asoh, H., & Ono, S. 2018. Degradation behavior of coatings formed by the plasma electrolytic oxidation technique on AZ61 magnesium alloys containing 0, 1, and 2 wt% Ca. International Journal of Technology, 9(3), 622–631.

24 Anawati, A., Hidayati, E., & Labibah, H. 2021. Characteristics of magnesium phosphate coatings formed on AZ31 Mg alloy by plasma electrolytic oxidation with improved current efficiency. Materials Science and Engineering: B, Solid-State Materials for Advanced Technology, 272, 115354.

25 Simchen, F., Sieber, M., Kopp, A., & Lampke, T. 2020. Introduction to plasma electrolytic oxidation—An overview of the process and applications. Coatings, 10(7), 1–19.

26 Lederer, S., Lutz, P., & Fürbeth, W. 2018. Surface modification of Ti 13Nb 13Zr by plasma electrolytic oxidation. Surface Coatings Technology, 335, 62–71.

27 Gowtham, S., Hariprasad, S., Arunnellaiappan, T., & Rameshbabu, N. 2017. An investigation on ZrO₂ nanoparticle incorporation, surface properties and electrochemical corrosion behaviour of PEO coating formed on CP-Ti. Surface Coatings Technology, 313, 263–273.

28 Yang, C., Cui, S., Wu, Z., Zhu, J., Huang, J., Ma, Z., ... & Wu, Z. 2021. High efficient co-doping in plasma electrolytic oxidation to obtain long-term self-lubrication on Ti6Al4V. Tribology International, 160, 107018.


29 Ćirić, A., & Stojadinović, S. 2019. Photoluminescence studies of ZrO₂³⁺/Yb³⁺ coatings formed by plasma electrolytic oxidation. Journal of Luminescence, 214.

30 Karimi, M., Boroujeny, B. S., & Adelkhani, H. 2022. Investigation and characterization of the plasma electrolytic oxidation of zirconium alloy: Effect of negative duty cycle. Applied Physics A: Materials Science & Processing, 128(8), 1–12.

31 Xu, W., Lu, X., Zhang, B., Liu, C., Lv, S., Yang, S., & Qu, X. 2018. Effects of porosity on mechanical properties and corrosion resistances of PM-fabricated porous Ti-10Mo alloy. Metals, 8(3), 188.

32 Al Afghani, F., & Anawati, A. 2021. Plasma electrolytic oxidation of Zircaloy-4 in a mixed alkaline electrolyte. Surface Coatings Technology, 426, 127786.

33 Farrakhov, R. G., Mukaeva, V. R., Fatkullin, A. R., Gorbatkov, M. V., Tarasov, P. V., Lazarev, D. M., ... & Parfenov, E. V. 2018, January. Plasma electrolytic oxidation treatment mode influence on corrosion properties of coatings obtained on Zr-1Nb alloy in silicate-phosphate electrolyte. In IOP Conference Series: Materials Science and Engineering (Vol. 292, p. 012006). IOP Publishing.

34 Parfenov, E. V., et al. 2019. Effect of frequency on plasma electrolytic oxidation of zirconium in pulsed unipolar mode. IOP Conference Series: Materials Science and Engineering, 672(1), 012010.

35 Aubakirova, V., Farrakhov, R., Astanin, V., Parfenov, E., Sharipov, A., & Gorbatkov, M. 2022. Plasma electrolytic oxidation of Zr-1%Nb alloy: Effect of sodium silicate and boric acid addition to calcium acetate-based electrolyte. Materials, 15(6).

36 Martin, J., Haraux, P., Ntomprougkidis, V., Migot, S., Bruyère, S., & Henrion, G. 2020. Characterization of metal oxide micro/nanoparticles elaborated by plasma electrolytic oxidation of aluminium and zirconium alloys. Surface Coatings Technology, 397.

37 Matykina, E., Arrabal, R., Skeldon, P., Thompson, G. E., Wang, P., & Wood, P. 2010. Plasma electrolytic oxidation of a zirconium alloy under AC conditions. Surface Coatings Technology, 204(14), 2142–2151.

38 Zhu, L., Zhang, W., Liu, H., Liu, L., Wang, F., & Qiao, Z. 2022. Single dense layer of PEO coating on aluminum fabricated by ‘chain-like’ discharges. Materials, 15(13).

39 Jangde, A., Kumar, S., & Blawert, C. 2020. Evolution of PEO coatings on AM50 magnesium alloy using phosphate-based electrolyte with and without glycerol and its electrochemical characterization. Journal of Magnesium and Alloys, 8(3), 692–715.

40 Clyne, T. W., & Troughton, S. C. 2019. A review of recent work on discharge characteristics during plasma electrolytic oxidation of various metals. International Materials Reviews, 64(3), 127–162.

41 Ntomprougkidis, V., Martin, J., Nominé, A., & Henrion, G. 2019. Sequential run of the PEO process with various pulsed bipolar current waveforms. Surface Coatings Technology, 374, 713–724.

42 Tsai, D. S., & Chou, C. C. 2018. Review of the soft sparking issues in plasma electrolytic oxidation. Metals, 8(2).

43 Rogov, A. B., Yerokhin, A., & Matthews, A. 2017. The role of cathodic current in plasma electrolytic oxidation of aluminum: Phenomenological concepts of the ‘soft sparking’ mode. Langmuir, 33(41), 11059–11069.

44 Cheng, Y., Matykina, E., Arrabal, R., Skeldon, P., & Thompson, G. E. 2012. Plasma electrolytic oxidation and corrosion protection of Zircaloy-4. Surface Coatings Technology, 206(14), 3230–3239.

45 Cheng, Y., et al. 2012. Comparison of plasma electrolytic oxidation of zirconium alloy in silicate- and aluminate-based electrolytes and wear properties of the resulting coatings. Electrochimica Acta, 85, 25–32.

46 Rogov, A. B., Matthews, A., & Yerokhin, A. 2020. Relaxation kinetics of plasma electrolytic oxidation coated Al electrode: Insight into the role of negative current. Journal of Physical Chemistry C, 124(43), 23784–23797.


47 Savushkina, S., Gerasimov, M., Apelfeld, A., & Suminov, I. 2021. Study of coatings formed on zirconium alloy by plasma electrolytic oxidation in electrolyte with submicron yttria powder additives. Metals, 11(9).

48 Cheng, Y. L., Xue, Z. G., Wang, Q., Wu, X. Q., Matykina, E., Skeldon, P., & Thompson, G. E. 2013. New findings on properties of plasma electrolytic oxidation coatings from study of an Al–Cu–Li alloy. Electrochimica Acta, 107, 358-378.

49 Li, N., Yuan, K., Song, Y., Cao, J., Xu, L., & Xu, J. 2021. Plasma electrolytic oxidation of Zircaloy-2 alloy in potassium hydroxide/sodium silicate electrolytes: The effect of silicate concentration. Bol. la Soc. Esp. Ceram. y Vidr., 60(5), 328–336.

50 Yi, A., Liao, Z., Zhu, W., Zhu, Z., Li, W., Li, K., ... & Huang, S. 2020. Influence of electrolyte temperature on the color values of black plasma electrolytic oxidation coatings on AZ31B Mg alloy.

51 Muhammad, F. H., Saaid, F. I., Razamin, N. A. Y., & Winie, T. 2017. Effect of temperature on conductivity performance of PEO-NaI based polymer electrolytes. Advanced Materials Research, 1142(1), 128–133.

52 Luo, S., Wang, Q., Ye, R., & Ramachandran, C. S. 2019. Effects of electrolyte concentration on the microstructure and properties of plasma electrolytic oxidation coatings on Ti-6Al-4V alloy. Surface Coatings Technology, 375, 864–876.

53 Hussein, R. O., Nie, X., & Northwood, D. O. 2019. Effect of current mode on the plasma discharge, microstructure and corrosion resistance of oxide coatings produced on 1100 aluminum alloy by plasma electrolytic oxidation. WIT Transactions on Engineering Science, 124, 3–16.

54 Jadhav, P., Bongale, A., & Kumar, S. 2021. The effects of processing parameters on the formation of oxide layers in aluminium alloys using plasma electrolytic oxidation technique. Journal of Mechanical Behavior of Materials, 30(1), 118–129.

55 Sikdar, S., Menezes, P. V., Maccione, R., Jacob, T., & Menezes, P. L. 2021. Plasma electrolytic oxidation (PEO) process—processing, properties, and applications. Nanomaterials, 11(6), 1–42.

56 Zhang, Y., Chen, Y., Duan, X., & Zhao, Y. 2021. Effect of treatment time on a PEO-coated AZ31 magnesium alloy. Materials and Corrosion, 72(12), 1885–1893.

57 Egorkin, V. S., Gnedenkov, S. V., Sinebryukhov, S. L., Vyaliy, I. E., Gnedenkov, A. S., & Chizhikov, R. G. 2018. Increasing thickness and protective properties of PEO-coatings on aluminum alloy. Surface Coatings Technology, 334, 29–42.

58 Rakoch, A. G., et al. 2020. Plasma electrolytic oxidation of AZ31 and AZ91 magnesium alloys: Comparison of coatings formation mechanism. Journal of Magnesium and Alloys, 8(3), 587–600.

59 Wu, T., et al. 2022. Role of phosphate, silicate and aluminate in the electrolytes on PEO coating formation and properties of coated Ti6Al4V alloy. Applied Surface Science, 595, 153523.

60 Casanova, L., Ceriani, F., Pedeferri, M., & Ormellese, M. 2022. Addition of organic acids during PEO of titanium in alkaline solution. Coatings, 12(2).

61 Morgenstern, R., Sieber, M., & Lampke, T. 2016. Plasma electrolytic oxidation of AMCs. IOP Conference Series: Materials Science and Engineering, 118(1), 012031.

62 Zhuanga, J., Song, R., Xiang, N., Lu, J., & Xiong, Y. 2017. Effects of oxidation time on corrosion resistance of plasma electrolytic oxidation coatings on magnesium alloy. International Journal of Materials Research, 108(9), 758–766.

63 Tavares, M. D. M., et al. 2019. Effect of duty cycle and treatment time on electrolytic plasma oxidation of commercially pure Al samples. Journal of Materials Research and Technology, 8(2), 2141–2147.

64 Simchen, F., Sieber, M., Kopp, A., & Lampke, T. 2020. Introduction to plasma electrolytic oxidation—an overview of the process and applications. Coatings, 10(7).

65 Hussein, R. O. 2010. Study on electrolytic plasma discharging behavior and its influence on the plasma electrolytic oxidation coatings.

66 Brown, S. D., Kuna, K. J., & Van, T. B. 1971. Anodic spark deposition from aqueous solutions of NaAlO2 and Na2SiO3. Journal of the American Ceramic Society, 54(8), 384–390.

67 Hussein, R. O., Nie, X., & Northwood, D. O. 2015. Plasma electrolytic oxidation (PEO) coatings on Mg-alloys for improved wear and corrosion resistance. In Surface Contact Mechanics Including Tribology XII (1), 163–176.


68 Cui, S., Han, J., Du, Y., & Li, W. 2007. Corrosion resistance and wear resistance of plasma electrolytic oxidation coatings on metal matrix composites. Surface Coatings Technology, 201(9-11 SPEC. ISS.), 5306–5309.

69 Mengesha, G. A., Chu, J. P., Lou, B. S., & Lee, J. W. 2020. Corrosion performance of plasma electrolytic oxidation grown oxide coating on pure aluminum: Effect of borax concentration. Journal of Materials Research and Technology, 9(4), 8766–8779.

70 Peng, Z., Xu, H., Liu, S., Qi, Y., & Liang, J. 2021. Wear and corrosion resistance of plasma electrolytic oxidation coatings on 6061 Al alloy in electrolytes with aluminate and phosphate. Materials, 14(14).

71 Molaei, M., Babaei, K., & Fattah-alhosseini, A. 2021. Improving the wear resistance of plasma electrolytic oxidation (PEO) coatings applied on Mg and its alloys under the addition of nano- and micro-sized additives into the electrolytes: A review. Journal of Magnesium and Alloys, 9(4), 1164–1186.

72 Li, J., Bai, X., Zhang, D., & Li, H. 2006. Characterization and structure study of the anodic oxide film on Zircaloy-4 synthesized using NaOH electrolytes at room temperature. Applied Surface Science, 252(20), 7436–7441.

73 Pauporté, T., Finne, J., Kahn-Harari, A., & Lincot, D. 2005. Growth by plasma electrolysis of zirconium oxide films in the micrometer range. Surface Coatings Technology, 199(2-3 SPEC. ISS.), 213–219.

74 Chen, Y., Nie, X., & Northwood, D. O. 2010. Plasma electrolytic oxidation (PEO) coatings on a zirconium alloy for improved wear and corrosion resistance. University of Windsor.

75 Hui, Z., Zhengxian, L., & Jihong, D. (2005). Oxide coatings on zirconium alloy deposited by AC microarc oxidation. Rare Metals Materials and Engineering, 34(8), 1330.

76 Matykina, E., Arrabal, R., Skeldon, P., Thompson, G. E., Wang, P., & Wood, P. 2010. Plasma electrolytic oxidation of a zirconium alloy under AC conditions. Surface and Coatings Technology, 204(14), 2142–2151.

77 Xue, W., Zhu, Q., Jin, Q., & Hua, M. 2010. Characterization of ceramic coatings fabricated on zirconium alloy by plasma electrolytic oxidation in silicate electrolyte. Materials Chemistry and Physics, 120(2-3), 656–660.

78 Chen, Y., Nie, X., & Northwood, D. O. 2010. Investigation of plasma electrolytic oxidation (PEO) coatings on a Zr-2.5Nb alloy using high temperature/pressure autoclave and tribological tests. Surface Coatings Technology, 205(6), 1774–1782.

79 Matykina, E., Arrabal, R., Skeldon, P., & Thompson, G. E. 2010. Optimisation of the plasma electrolytic oxidation process efficiency on aluminium. Surface and Interface Analysis, 42(4), 221–226.

80 Wang, Y. M., Feng, W., Xing, Y. R., Ge, Y. L., Guo, L. X., Ouyang, J. H., ... & Zhou, Y. 2018. Degradation and structure evolution in corrosive LiOH solution of microarc oxidation coated Zircaloy-4 alloy in silicate and phosphate electrolytes. Applied Surface Science, 431, 2-12.

81 Li, N., Yuan, K., Song, Y., Cao, J., Xu, L., & Xu, J. 2020. Plasma electrolytic oxidation of Zircaloy-2 alloy in potassium hydroxide/sodium silicate electrolytes: The effect of silicate concentration. Bol. la Soc. Esp. Ceram. y Vidr.

82 Cheng, Y. L., & Wu, F. 2012. Plasma electrolytic oxidation of zircaloy-4 alloy with DC regime and properties of coatings. Trans. Nonferrous Met. Soc. China (English Ed.), 22(7), 1638–1646.

83 Rokosz, K., et al. 2019. SEM, EDS and XPS studies of AC & DC PEO coatings obtained on titanium substrate. IOP Conf. Ser. Mater. Sci. Eng., 564(1).

84 Fatkullin, A. R., Parfenov, E. V., Yerokhin, A., Lazarev, D. M., & Matthews, A. 2015. Effect of positive and negative pulse voltages on surface properties and equivalent circuit of the plasma electrolytic oxidation process. Surf. Coatings Technol., 284, 427–437.

85 Toro, L., Zuleta, A. A., Correa, E., Calderón, D., Galindez, Y., Calderón, J., ... & Valencia-Escobar, A. 2020. New insights on the influence of low frequency pulsed current on the characteristics of PEO coatings formed on AZ31B. Materials Research Express, 7(1), 016539.Gao, Y., Yerokhin, A., & Matthews, A. 2014. Effect of current mode on PEO treatment of magnesium in Ca- and P-containing electrolyte and resulting coatings. Appl. Surf. Sci., 316, 558–567.


86 Fattah-alhosseini, A., Chaharmahali, R., Keshavarz, M. K., & Babaei, K. 2021. Surface characterization of bioceramic coatings on Zr and its alloys using plasma electrolytic oxidation (PEO): A review. Surfaces and Interfaces, 25.

87 Bahador, R., Hosseinabadi, N., & Yaghtin, A. 2021. Effect of power duty cycle on plasma electrolytic oxidation of A356-Nb2O5 metal matrix composites. J. Mater. Eng. Perform., 30(4), 2586–2604.

88 Arrabal, R., Mohedano, M., Mingo, B., Matykina, E., Pardo, A., & Merino, M. C. 2015. Characterization and corrosion behaviour of PEO coatings on AM50 magnesium alloy with incorporated particles. In European Corrosion Congress, EUROCORR 2015 (3), 1924–1933.

89 Tang, Q., & Gong, J. 2013. Effect of porosity on the microhardness testing of brittle ceramics: A case study on the system of NiO-ZrO2. Ceram. Int., 39(8), 8751–8759.

90 Zhuang, J. J., Song, R. G., Xiang, N., Xiong, Y., & Hu, Q. 2017. Effect of current density on microstructure and properties of PEO ceramic coatings on magnesium alloy. Surf. Eng., 33(10), 744–752.

91 Dehnavi, V., Luan, B. L., Shoesmith, D. W., Liu, X. Y., & Rohani, S. 2013. Effect of duty cycle and applied current frequency on plasma electrolytic oxidation (PEO) coating growth behavior. Surf. Coatings Technol., 226, 100–107.

92 Attarzadeh, N., & Ramana, C. V. (2021. Plasma electrolytic oxidation ceramic coatings on zirconium (Zr) and zirconium alloys: Part I—Growth mechanisms, microstructure, and chemical composition. Coatings, 11(6).

93 Sabouri, M., Mousavi Khoei, S. M., & Neshati, J. 2017. Plasma current analysis using discrete wavelet transform during plasma electrolytic oxidation on aluminum. J. Electroanal. Chem., 792, 79–87.

Refbacks

  • There are currently no refbacks.