Functionalized Copper Phthalocyanine and Zinc Phthalocyanine as a Coating Layer on the Sensitivity of QCM-Based VOCs Sensor

Masruroh Masruroh, Rachmat Triandi Tjahjanto, Gancang Saroja, Dionysius J. D. H. Santjojo

Abstract

The sensitivity of a QCM-based VOCs sensor with two kinds of a metal phthalocyanine, i.e., copper phthalocyanine (CuPc) and zinc phthalocyanine (ZnPc) was examined for various VOCs. The sensitivity of the two metal phthalocyanine was determined by the compatibility of the overlapped metal orbitals (Cu(II) dan Zn(II)) and the corresponding VOCs. The CuPc and the ZnPc layer were deposited on the quartz crystal oscillator by a vacuum evaporation method. The frequency shift and the sensitivity of the sensors with the two functional layers were tested using 5 VOCs: formaldehyde, propanol, ethanol, toluene, and ketone. The CuPc sensor showed the highest sensitivity to formaldehyde. On the other hand, the ZnPc was highly sensitive to ethanol.

Keywords

QCM; metal phthalocyanine; sensitivity; metal orbital; VOCs

Full Text:

PDF

References

1. Dugheri, S.; Bonari, A.; Pompilio, I.; Colpo, M.; Mucci, N.; Arcangeli, G. An Integrated Air Monitoring Approach for Assessment of Formaldehyde in the Workplace. Saf Health Work 2018, 9, 479–485, doi:10.1016/j.shaw.2018.05.002.

2. van den Broek, J.; Klein Cerrejon, D.; Pratsinis, S.E.; Güntner, A.T. Selective Formaldehyde Detection at Ppb in Indoor Air with a Portable Sensor. J Hazard Mater 2020, 399, 123052, doi:10.1016/j.jhazmat.2020.123052.

3. Engel, L.; Benito-Altamirano, I.; Tarantik, K.R.; Pannek, C.; Dold, M.; Prades, J.D.; Wöllenstein, J. Printed Sensor Labels for Colorimetric Detection of Ammonia, Formaldehyde and Hydrogen Sulfide from the Ambient Air. Sens Actuators B Chem 2021, 330, doi:10.1016/j.snb.2020.129281.

4. Mariano, S.; Wang, W.; Brunelle, G.; Bigay, Y.; Tran Thi, T.H. Colorimetric Detection of Formaldehyde: A Sensor for Air Quality Measurements and a Pollution-Warning Kit for Homes. Procedia Eng 2010, 5, 1184–1187, doi:10.1016/j.proeng.2010.09.323.

5. Kang, Z.; Zhang, D.; Li, T.; Liu, X.; Song, X. Polydopamine-Modified SnO2 Nanofiber Composite Coated QCM Gas Sensor for High-Performance Formaldehyde Sensing. Sens Actuators B Chem 2021, 345, 130299, doi:10.1016/j.snb.2021.130299.

6. Feng, L.; Feng, L.; Li, Q.; Cui, J.; Guo, J. Sensitive Formaldehyde Detection with QCM Sensor Based on PAAm/MWCNTs and PVAm/MWCNTs †. ACS Omega 2021, 6, 14004–14014, doi:10.1021/acsomega.0c05987.

7. Triyana, K.; Sembiring, A.; Rianjanu, A.; Hidayat, S.N.; Riowirawan, R.; Julian, T.; Kusumaatmaja, A.; Santoso, I.; Roto, R. Chitosan-Based Quartz Crystal Microbalance for Alcohol Sensing. Electronics (Switzerland) 2018, 7, 1–11, doi:10.3390/electronics7090181.

8. Van Cat, V.; Dinh, N.X.; Ngoc Phan, V.; Le, A.T.; Nam, M.H.; Dinh Lam, V.; Dang, T. Van; Quy, N. Van Realization of Graphene Oxide Nanosheets as a Potential Mass-Type Gas Sensor for Detecting NO2, SO2, CO, and NH3. Mater Today Commun 2020, 25, 101682, doi:10.1016/j.mtcomm.2020.101682.

9. Sakti, S.P.; Masruroh; Kamasi, D.D.; Khusnah, N.F. Stearic Acid Coating Material Loading Effect to Quartz Crystal Microbalance Sensor. Mater Today Proc 2019, 13, 53–58, doi:10.1016/j.matpr.2019.03.186.

10. Sauerbrey, G. Verwendung von Schwingquarzen Zur Wägung Dünner Schichten Und Zur Mikrowägung. Zeitschrift für Physik 1959, 155, 206–222, doi:10.1007/BF01337937.

11. Budianto, A.; Wardoyo, A.Y.P.; Masruroh; Dharmawan, H.A.; Nurhuda, M. Performance Test of an Aerosol Concentration Measurement System Based on Quartz Crystal Microbalance. J Phys Conf Ser 2021, doi:10.1088/1742-6596/1811/1/012033.

12. Ding, X.; Chen, X.; Chen, X.; Zhao, X.; Li, N. A QCM Humidity Sensor Based on Fullerene/Graphene Oxide Nanocomposites with High Quality Factor. Sens Actuators B Chem 2018, 266, 534–542, doi:10.1016/j.snb.2018.03.143.

13. Budianto, A.; Wardoyo, A.Y.P.; Masruroh; Dharmawan, H.A. An Airborne Fungal Spore Mass Measurement System Based on Graphene Oxide Coated QCM. Pol J Environ Stud 2022, 31, 3523–3529, doi:10.15244/pjoes/147057.

14. Berouaken, M.; Talbi, L.; Alkama, R.; Sam, S.; Menari, H.; Chebout, K.; Manseri, A.; Boucheham, A.; Gabouze, N. Quartz Crystal Microbalance Coated with Vanadium Oxide Thin Film for CO 2 Gas Sensor at Room Temperature. Arab J Sci Eng 2018, 43, 5957–5963, doi:10.1007/s13369-018-3153-y.

15. Kumar, A.; Brunet, J.; Varenne, C.; Ndiaye, A.; Pauly, A. Phthalocyanines Based QCM Sensors for Aromatic Hydrocarbons Monitoring: Role of Metal Atoms and Substituents on Response to Toluene. Sens Actuators B Chem 2016, 230, 320–329, doi:10.1016/j.snb.2016.02.032.

16. Pérez, R.L.; Ayala, C.E.; Park, J.Y.; Choi, J.W.; Warner, I.M. Coating-Based Quartz Crystal Microbalance Detection Methods of Environmentally Relevant Volatile Organic Compounds. Chemosensors 2021, 9, doi:10.3390/chemosensors9070153.

17. Mukherjee, D.; Manjunatha, R. Phthalocyanines as Sensitive Materials for Chemical Sensors. In Materials for Chemical Sensing; Springer International Publishing: Bungalore, 2017; pp. 165–226 ISBN 9783319478357.

18. Przybyl, B.; Janczak, J. Complexes of Zinc Phthalocyanine with Monoaxially Coordinated Imidazole-Derivative Ligands. Dyes and Pigments 2016, 130, 54–62, doi:http://dx.doi.org/10.1016/j.dyepig.2016.03.010.

19. Bohrer, F.I.; Colesniuc, C.N.; Park, J.; Ruidiaz, M.E.; Schuller, I.K.; Kummel, A.C.; Trogler, W.C. Comparative Gas Sensing in Cobalt, Nickel, Copper, Zinc, and Metal-Free Phthalocyanine Chemiresistors. J Am Chem Soc 2009, 131, 478–485, doi:10.1021/ja803531r.

20. Derkowska, B.; Wojdyła, M.; Czaplicki, R.; Bała, W.; Sahraoui, B. Influence of the Central Metal Atom on the Nonlinear Optical Properties of MPcs Solutions and Thin Films. Opt Commun 2007, 274, 206–212, doi:10.1016/j.optcom.2007.01.067.

21. Collins, R.A.; Mohammed, K.A. Gas Sensitivity of Some Metal Phthalocyanines. J Phys D Appl Phys 1988, 21, 154–161, doi:10.1088/0022-3727/21/1/021.

Refbacks

  • There are currently no refbacks.