The Spatial Arrangement of The Electric Field in the Needle-Plate Electrospinning

Ahmad Kusumaatmaja, Muhamad Nasrudin Manaf, Shiddiq Nur Hidayat, Kuwat Triyana, Farah Rahma, Grandprix T. M. Kadja, Muchammad Yunus


The electric field distribution of the Neddle-Plate (NP) electrospinning set up has reported due to the simple classical electrodynamics solutions. The charge is assumed to distribute uniformly in the needle (nozzle) and the collector (plate). The electric field has an influence only in the early stage of the electrospinning process. The electric field and the viscosity of the jet fluid have caused the bending of the straight jet. The high viscosity of the fluid can preserve the straight jet length much longer. The electric field gives the initial angular momentum of the jet due to the whipping motion of the jet. For the area away from the nozzle, the electric does not influence the whipping motion. Then the whipping motion solely due to the influence from the charge repulsion of the jet fluid and the evaporation of the solvent.


Electrospinning, nanofiber, electric field distribution

Full Text:



Xue, J., Wu, T., Dai, Y., & Xia, Y. 2019. Electrospinning and electrospun nanofibers: Methods, materials, and applications. Chemical reviews, 119(8), 5298-5415. doi:10.1021/acs.chemrev.8b00593 [2] Zheng, Y., Xie, S., & Zeng, Y. 2013. Electric field distribution and jet motion in electrospinning process: from needle to hole. Journal of Materials Science, 48(19), 6647-6655. doi: 10.1007/s10853-013-7465-8. [3] Stachewicz, U., Szewczyk, P. K., Kruk, A., Barber, A. H., & Czyrska-Filemonowicz, A. 2019. Pore shape and size dependence on cell growth into electrospun fiber scaffolds for tissue engineering: 2D and 3D analyses using SEM and FIB-SEM tomography. Materials Science and Engineering: C, 95, 397-408. doi:10.1016/j.msec.2017.08.076 [4] Riwu, Y. F., Loi, F. H. P., Kusumaatmaja, A., Roto, & Triyana, K. 2016. Effect of Chitosan concentration and heat treatment on electrospun PVA/Chitosan nanofibers. AIP Conference Proceedings, 1755(1), 150012. doi: 10.1063/1.4958585. [5] Kusumaatmaja, A., Fauji, N., & Triyana, K. 2017. Polysulfone/Polyacrilonitrile Membrane for Oil/Water Separation. In Materials Science Forum (Vol. 886, pp. 145-149). Trans Tech Publications Ltd. doi: 10.4028/ [6] Hrib, J., Sirc, J., Hobzova, R., Hampejsova, Z., Bosakova, Z., Munzarova, M., & Michalek, J. 2015. Nanofibers for drug delivery–incorporation and release of model molecules, influence of molecular weight and polymer structure. Beilstein journal of nanotechnology, 6(1), 1939-1945. doi: 10.3762/bjnano.6.198. [7] Namekawa, K., Schreiber, M. T., Aoyagi, T., & Ebara, M. 2014. Fabrication of zeolite–polymer composite nanofibers for removal of uremic toxins from kidney failure patients. Biomaterials Science, 2(5), 674-679. doi: 10.1039/c3bm60263j. [8] Zahari, A. M., Yusoff, A. R. M., Buang, N. A., Satishkumar, P., Jasni, M. J. F., & Yusop, Z. 2015. Fabrication and characterization of polyvinylidene fluoride composite nanofiber membrane for water flux property. Jurnal Teknologi, 74(11). doi: 10.11113/jt.v74.4854. [9] Rianjanu, A., Roto, R., Julian, T., Hidayat, S. N., Kusumaatmaja, A., Suyono, E. A., & Triyana, K. 2018. Polyacrylonitrile nanofiber-based quartz crystal microbalance for sensitive detection of safrole. Sensors, 18(4), 1150. doi: 10.3390/s18041150. [10] O’Connor, R. A., & McGuinness, G. B. 2016. Electrospun nanofibre bundles and yarns for tissue engineering applications: A review. Proceedings of the Institution of Mechanical Engineers, Part H: Journal of Engineering in Medicine, 230(11), 987-998. doi: 10.1177/0954411916656664. [11] Ismaya, E. P., Diantoro, M., Kusumaatmaja, A., & Triyana, K. 2017. Preparation of PVA/TiO2 composites nanofibers by using electrospinning method for photocatalytic degradation. In IOP Conference Series: Materials Science and Engineering, 202(1), 012011. doi: 10.1088/1757-899X/202/1/012011. [12] Rogina, A. 2014. Electrospinning process: Versatile preparation method for biodegradable and natural polymers and biocomposite systems applied in tissue engineering and drug delivery. Applied Surface Science, 296, 221-230. doi:10.1016/j.apsusc.2014.01.098 [13] Zheng, X., Shen, Z. P., Shi, L., Cheng, R., & Yuan, D. H. 2017. Photocatalytic membrane reactors (PMRs) in water treatment: configurations and influencing factors. Catalysts, 7(8), 224. doi: 10.3390/catal7080224. [14] Mertaniemi, H., Escobedo-Lucea, C., Sanz-Garcia, A., Gandía, C., Mäkitie, A., Partanen, J., & Yliperttula, M. 2016. Human stem cell decorated nanocellulose threads for biomedical applications. Biomaterials, 82, 208-220. doi: 10.1016/j.biomaterials.2015.12.020. [15] Li, C., Fu, R., Yu, C., Li, Z., Guan, H., Hu, D., & Lu, L. 2013. Silver nanoparticle/chitosan oligosaccharide/poly (vinyl alcohol) nanofibers as wound dressings: a preclinical study. International journal of nanomedicine, 8, 4131. doi: 10.3390/molecules22040585. [16] Yang, X., Wang, J., Guo, H., Liu, L., Xu, W., & Duan, G. 2020. Structural design toward functional materials by electrospinning: A review. e-Polymers, 20(1), 682-712. doi:10.1515/epoly-2020-0068 [17] Stepanyan, R., Subbotin, A., Cuperus, L., Boonen, P., Dorschu, M., Oosterlinck, F., & Bulters, M. 2014. Fiber diameter control in electrospinning. Applied Physics Letters, 105(17), 173105. doi: 10.1063/1.4900778. [18] Jiang, J. G., Duan, H. W., He, T. H., & Li, B. 2015. Electric field simulation and experimentation of needle-plate type electrospinning machine. Journal of Computational and Theoretical Nanoscience, 12(9), 2016-2022. doi: 10.1166/jctn.2015.3980. [19] Wang, Y., & Wang, C. 2021. Extension rate and bending behavior of electrospinning jet: The role of solution conductivity. Polymer, 222, 123672. doi:10.1016/j.polymer.2021.123672 [20] Puspitasari, I., Diantoro, M., Kusumaatmaja, A., & Triyana, K. 2017. Effect of blend ratio on morphology and swelling properties of PVA/chitosan nanofibers. Materials Science Forum, =901, 79-84. doi: 10.4028/


  • There are currently no refbacks.