Design of Resistivity Meter Data Storage System Based on Arduino Mega 2560 Laboratory Scale Measurement Results
Abstract
A resistivity meter can find out resistivity depth of rock structure, sediment layer, or the depth of water surface. However, the resistivity meter that is often used requires manually recording of the measurement results before inputting them into the processing data software, and this creates many steps in the geoelectric survey. This is because acquiring a resistivity meter with a data storage system entails additional costs, due to its expensive price. Consequently, many of the resistivity meters currently found in laboratories or used in the field are not equipped with a data storage system. This research aims to design a resistivity meter with a data storage system for measurement results, based on Arduino Mega 2560, for laboratory scale. The used sensors were INA219 currents sensor and voltage sensor. In addition, the tests were carried out to determine the level of accuracy of each sensor and testing for data storage system of measurement result. This research employed Schlumberger configuration in the development of resistivity meter. This research has successfully developed a resistivity meter device with a current sensor accuracy level of 97.28% using the INA219 sensor, and a voltage sensor accuracy level of 97.44%. It is noteworthy that the accuracy level is high, and the device is capable of performing readings effectively. This research has successfully designed a resistivity meter which has a measurement data storage.
Keywords
Full Text:
PDFReferences
- Dobrin, M. B., & Savit, C. H. (1988). Introduction to Geophysical Prospecting Fourth Edition. McGraw-Hill. New York.
- Widodo, Lapanporo, B. P., & Jumarang, M. I. (2018). Rancang Bangun Alat Geolistrik Berbasis Arduino Mega2560. Jurnal Physics Communication, 2(1), 52–62.
- Muhammad, A., & Gunawan, H. (2016). Rancang Bangun Alat Geolistrik Berbasis Pulse – Width Modulation ( PWM ). Seminar Nasional Fisika 2016, V, 143–146. https://doi.org/doi.org/10/21009/0305020127
- Indarto, B., Sudenasahaq, G. R. F., Rachmad, D. B., Basri, M. H., & Sunarno, H. (2016). Rancang Bangun Sistem Pengukuran Resistivitas Geolistrik dengan menggunakan Sumber Arus Konstan. Jurnal Fisika Dan Aplikasinya, 12(2), 83–89.
- Loke, M. H. (2011). Electrical Resistivity Surveys and Data Interpretation. In H. K. Gupta (Ed.), Encyclopedia of Solid Earth Geophysics (pp. 276–283). Springer Netherlands. https://doi.org/10.1007/978-90-481-8702-7_46
- Asmaranto, R. (2012). IDENTIFIKASI AIR TANAH (GROUNDWATER) MENGGUNAKAN METODE RESISTIVITY (GEOLISTRIK with IP2WIN Software) RUNI ASMARANTO (R. Asmaranto, Ed.). Jurusan Teknik Pengairan FT, Universitas Brawijaya. Kota Malang.
- Telford, W. M., Geldart, L. P., & Sheriff, R. E. (1990). Applied geophysics (2nd ed.). Cambridge University Press.
- Broto, S., & Sera Afifah, R. (2012). Pengolahan Data Geolistrik dengan Metode Schlumberger. Jurnal Ilmiah Bidang Ilmu Kerekayasaan, 29(2), 120–128.
- Kurniawan, A. (2009). Basic IP2Win Tutorial Basic Principles in Using IP2Win Software.
- Sharma, M., Grover, A., & Bande, P. (2009). Low Cost Sensors for General Applications. International Journal of Recent Trends in Engineering, 1.
- Sinclair, Ian, R. (2001). Sensors And Transducers. Newnes. Oxford.
- Alexander, C. K., & Sadiku, M. N. O. (2009). Fundamentals of Electric Circuits (4th ed.). McGraw-Hill. New York
- Hanisadewa, T., Yusti Viananta, T., & Primawan, A. B. (2019). Unjuk Kerja Jaringan Sensor Nirkabel Dengan Menggunakan Topologi Star. Seminar Nasional Sains Teknologi Dan Inovasi Indonesia (SENASTINDO AAU), 1(1).
- Texas Instruments. (2008). INA219. www.ti.com
- Kadir, A. (2017). Pemograman Arduino dan Processing. PT. Elex Media Komputindo.
- Muhayadi, S., Mardiana, L., & Alaydrus, A. T. (2018). Rancang bangun sistem data logger resistivity meter digital berbasis arduino mega 2560. (Skripsi Sarjana, Universitas Mataram). http://eprints.unram.ac.id/8097
Refbacks
- There are currently no refbacks.