Identifikasi Daerah Rawan Longsor secara Mikrozonasi di Jalan Alternatif Provinsi menggunakan Metode Simple Additive Weighting (SAW)

Darmawan Ikhlas Fadli, Arif Ismul Hadi, Zagita Allifya, Septi Anggriani, Rama Ramdani, Beni Syakban Idris, Refrizon Refrizon

Abstract

The alternative provincial in Bengkulu Tengah Regency is located in a location bordering the Musi Fault segment that is part of the Great Sumatran Fault Zone. This condition makes cross-provincial roads in Central Bengkulu Regency vulnerable to natural disasters such as landslides. The purpose of the study was to determine areas that have the potential for landslides in earthquake-prone areas of Central Bengkulu Regency, Bengkulu Province, Indonesia. We performed the HVSR (horizontal to vertical spectral ratio) analysis and the simple additive weighting (SAW) method to achieve the study purpose. Field data acquisition using the PASI Gemini2 broadband seismometer (triaxial geophone). Next, we analyzed the tremor data recorded in the field using a wave spectrum. From the results of this study, we knew that the possibility of landslides in the survey area classified into three categories that is low, medium and high. Landslide risk should be paid more attention in areas with high potential, especially in densely populated areas. The main threat in the study area is an earthquake along the active Sumatran fault. Earthquakes in areas that are very steep and prone to landslides can increase the risk and cause landslides.

Keywords

Landslide, microzonation, SAW method, alternative provincial road

Full Text:

PDF

References

  1. Keefer, D.K. 1984. Landslides Caused by Earthquakes. Geological Society of America Bulletin. Vol. 95, Hal. 406–421.

  2. Hansen, A. 1984. Landslide Hazard Analysis. In Slope Instability. Brunsden, D., Prior, E., Eds.; Wiley: New York, USA, Hal. 523–602.

  3. Dai, F.C.; Lee, C.F.; Ngai, Y.Y. 2002. Landslide Risk Assessment and Management: An Overview. Engineering geology. Vol. 64, Hal. 65–87.

  4. Dahal, R.K.; Hasegawa, S.; Masuda, T.; Yamanaka, M. 2006. Roadside Slope Failures in Nepal During Torrential Rainfall and Their Mitigation. Disaster mitigation of debris flows, slope failures and landslides, Hal. 503–514.

  5. Glade, T. 2003. Landslide Occurrence as A Response to Land Use Change: A Review of Evidence From New Zealand. Catena, Vol. 51, Hal. 297–314.

  6. Kanungo, D.P.; Arora, M.K.; Sarkar, S.; Gupta, R.P. A 2006. comparative study of conventional, ANN black box, fuzzy and combined neural and fuzzy weighting procedures for landslide susceptibility zonation in Darjeeling Himalayas. Engineering geology, Vol. 85, Hal. 347–366.

  7. Fell, R.; Corominas, J.; Bonnard, C.; Cascini, L.; Leroi, E.; Savage, W.Z. 2008. Guidelines for landslide susceptibility, hazard, and risk zoning for land use planning. Engineering geology, Vol. 102, Hal. 99–111.

  8. Promper, C.; Puissant, A.; Malet, J.P.; Glade, T. 2014. Analysis of land cover changes in the past and the future as contribution to landslide risk scenarios. Applied Geography, Vol. 53, Hal. 11–19.

  9. Natawidjaya, D.H. and Triyoso, W., 2007. The Sumatran Fault Zone: From Source to Hazard. Journal of Earthquake and Tsunami, Vol. 1, No. 1, Hal. 21-47.

  10. Anonim. 2020. Kabupaten Bengkulu Tengah Dalam Angka. BPS Kab. Bengkulu Tengah, Kabupaten Bengkulu Tengah, Prov. Bengkulu, Hal. 444.

  11. Sudrajat, A. 2007. Bengkulu Sebagai Daerah Rawan Bencana. Badan Meteorologi Klimatologi dan Geofisika, Bengkulu.

  12. Hadi, A. I., Refrizon, R., Farid, M., Harlianto, B., & Sari, J. I. 2021. Landslide Potential Investigation for Disaster Risk Reduction in Central Bengkulu Regency, Bengkulu Province, Indonesia. Indonesian Journal on Geoscience, Vol. 8, No. 3, Hal. 313-328.

  13. Gafoer, S., Amin, T.C. & Pardede. 2007. Geological map of Bengkulu Quadrangle, Sumatra, scale 1:250,000. Department of Mines and Energy. Bandung.

  14. Anonim. 2013. HVSR data acquisition unit GEMINI-2. User manual PASI, Torino, Italy (Unpublished).

  15. Anonim. 2004. Guidelines for the Imple­ mentation of the H/V Spectral Ratio Tehnique on Ambient Vibrations: Measurements, Pro­ cessing and Interpretation, European Com­ mission – Research General Directorate, Project No. EVG1­CT­2000­00026 SESAME. Ftp://ftp.geo.uib.no/pub/seismo/SOFTWARE/ SESAME/USER-GUIDELINES/SESAME-HV-User-Guidelines.pdf [15 April 2022].

  16. Irsyam, M., Sengara, W., Aldiamar, F., Widiyantoro, S., Triyoso, W., Hilman, D., Kertapati, E., Meilano, I., Suhardjono, Asrurifak, M. & Ridwan, M. 2010. Ringkasan Hasil Studi Tim Revisi Peta Gempa Indonesia 2010. Kementerian Pekerjaan Umum. Bandung.

  17. Kramer, S.L.1996. Geotechnical Earthquake Engineering. Prentice-Hall: Upper Saddle River, NJ, USA, Hal. 45–124.

  18. Nakamura, Y.; Saita, J.; Sato, T. 2003. Development of vulnerability assessment models using microtremor/strong motion. In Proceedings of the 6th EQTAP Workshop, Kashikojima, Japan, 1–2 December.

  19. Nakamura, Y. 2008. On the H/V spectrum. In Proceedings of the 14th World Conference on Earthquake Engineering, Beijing, China, 12–17 October 2008.

  20. Douglas, J., 2004. Ground Motion Estimation Equation 1964-2003. Department of Civil dan Environmental Engineering Imperial College London South Kensington Campus, United Kingdom.

  21. Bullen, K.E.1987. An Introduction to the Theory of Seismology, 3rd ed. Cambridge University Press: Cambridge, UK, Hal. 231–234.

  22. Fell, R.; Corominas, J.; Bonnard, C.; Cascini, L.; Leroi, E.; Savage, W.Z. 2008. Guidelines for landslide susceptibility, hazard and risk zoning for land-use planning on behalf of the JTC-1 Joint Technical Committee on Landslides and Engineered Slopes. Engineering geology, Vol. 102, Hal. 99–111

  23. Kusumadewi, S.; Hartati, S.; Harjoko, A.; Wardoyo, R. 2006. Fuzzy Multi-Attribute Decision Making (Fuzzy MADM), 1st ed. Graha Ilmu: Yogyakarta, Indonesia. Hal. 69–81.

  24. Hadi, A.I., Brotopuspito, K.S., Pramumijoyo, S., and Hardiyatmo, H.C., 2018. Regional Landslide Potential Mapping in Earthquake-Prone Areas of Kepahiang Regency, Bengkulu Prov ince, Indonesia. Geosciences, Vol. 8, Hal. 1-16.

  25. Anonim. 2012. Peraturan Kepala BadanNasional Penanggulangan Bencana Nomor 02 Tahun 2012 TentangPedoman Umum Pengkajian Risiko Bencana. Badan Nasional Penanggulangan Bencana, Jakarta. Https://bnpb.go.id//uploads/migration/ pubs/30.pdf [15 April 2022].

  26. Ishihara, K., 1996. Soil Behaviour in Earthquake Geotechnics. Oxford University Press Inc.: New York, USA, Hal. 330.

  27. Oliveira, C.S., Roca, A., and Goula, X., 2008. As­ sessing and Managing Earthquake Risk (Geo­ scientific and Engineering Knowledge for Earthquake Risk Mitigation: developments, tools, techniques). Springer: Netherlands, Hal. 545.

  28. Pusgen, T. P. S. G. N. 2017. Peta Sumber dan Bahaya Gempa Indonesia Tahun 2017. Pusat Penelitian dan Pengembangan Perumahan dan Permukiman, KementerianPUPR: Bandung, Indonesia.

  29. Yuan RM, Deng QH, Cunningham D, Xu C, Xu XW, Chang CP.2013. Density distribution of landslides triggered by the 2008 Wenchuan earthquake and their relationships to peak ground acceleration. Bulletin of the Seismological Society of America, Vol. 103, No. 4, Hal. 2344–2355.

  30. Allen, T.I. dan Wald, D.J., 2007. Topographic Slope as a Proxy for Global Seismic Site Conditions (Vs30) and Amplification around the Globe. Https://pubs.usgs.gov/of/2007/1357/pdf/OF07-1357_508.pdf [5 July 2016].

  31. Zhang, Y,B,, Xiang, C.L., Chen, Y.L., Cheng, Q.G., Xiao, L., Yu, P.C., & Zhi, W.C.. 2019. Permanent Displacement Models of Earthquake-Induced Landslides Considering Near-Fault Pulse-Like Ground Motions. Journal of Mountain Science, Vol. 16, No. 6, Hal. 1244–57.

  32. Hadi, 2019. Landslide Potential Study of the Kepahiang Regency Areas, Bengkulu Prov­ ince Especially Due to the Earthquake Using the Elastic Parameter Approach. PhD Thesis at Dept. of Physics, Faculty of Mathematics and Natural Sciences, Universitas Gadjah Mada, Hal. 56-182.

  33. Anonim. 2012. Standar Nasional Indonesia 1726-2012 tentang Tata Cara Perencanaan Tahan Gempa untuk Struktur Bangunan Gedung dan Non Gedung. Badan Standarisasi Nasional, Jakarta. Hal. 149.

  34. Zuidam, R.A.V., 1983. Guide to Geomorphological Aerial Photographic Interpretation and Mapping. ITC, Eschede: The Nederland. Hal. 325.

  35. Kayastha P, Dhital MR, dan De Smedt F .2013. Application of the analytical hierarchy process (AHP) for landslide susceptibility mapping: a case study from the Tinau watershed, west Nepal. Computers & Geosciences. Vol. 52, Hal. 398–408.

  36. Tofelde S, Dusing W, Schildgen TF, Wittmann H, Alonso R, dan Strecker MR .2017. Changes in denudation rates and erosion processes in the transition from a low‑relief, arid orogen interior to a high‑relief, humid mountain‑front setting, Toro basin, southern central Andes, American Geophysical Union, Fall Meeting 2017, abstract.

  37. Chen, Z., Liang,S., Ke, Y., Yang, Z., & Zhao, H. 2020. Landslide Susceptibility Assessment Using Different Slope Units Based on the Evidential Belief Function Model. Geocarto International. Vol. 35, No. 15, Hal. 1641–64.

  38. Guo, C.W., Yi, D.H, Ling, K.Y., & Helal, A. 2017. Size and Spatial Distribution of Landslides Induced by the 2015 Gorkha Earthquake in the Bhote Koshi River Watershed. Journal of Mountain Science, Vol. 14, No. 10, Hal. 1938–50.

  39. Anonim. 2020. Curah Hujan Kabupaten Bengkulu Tengah. Laporan Tahunan BMKG Provinsi Bengkulu, Bengkulu (Unpublished).

  40. Kirmanto, D., 2007. Pedoman Penataan Ruang Kawasan Rawan Bencana Longsor. Http:// landspatial.bappenas.go.id/komponen/ peraturan/the_file/permen22_2007.pdf [5 Mei 2022].

  41. Yao, J., Qin, S., Qiao, S., Liu, X., Zhang, L., & Chen, J. 2022. Application of a two-step sampling strategy based on deep neural network for landslide susceptibility mapping. Bulletin of Engineering Geology and the Environment, Vol. 81, No. 148.

  42. Huang, F., Yao, C., Liu, W., Li, Y., & Liu, X. 2018. Landslide susceptibility assessment in the Nantian area of China: a comparison of frequency ratio model and support vector machine. Geomatics, Natural Hazards and Risk, Vol. 9, No. 1, Hal. 919-938.

  43. Hong, H., Liu, J. & Zhu, A.X. 2020. Modeling landslide susceptibility using LogitBoost alternating decision trees and forest by penalizing attributes with the bagging ensemble. Science of the total environment, Vol. 718, No. 137231.

Refbacks

  • There are currently no refbacks.