Structural Investigation and Properties Of Tio2 Thin Film Prepared by Sol-Gel Spin Coating

Diani Galih Saputri, Mohd Khairul Bin Ahmad, Agus Supriyanto, Achmad Nasyori, Salisu I Kunya, Nurul Amiera Shahida Maarof, Siti Nurhaziqah Abd Majid, Anis Zafirah Mohd Ismail, Shazleen Ahmad Ramli

Abstract

We report the structural properties of TiO2 (Titanium dioxide) thin films grown using sol-gel spin coating method for temperature treatment (with temperature 50o C and without temperature) The difference in temperature is carried out to determine changes in the surface of the sample by using heating or not. Ideally, the thickness of the TiO2 layer ranges from 10-15 μm, therefore in this study it was carried out in 5 layers. Field Emission Scanning Electron Microscopy (FESEM) consist of surface morphology, Cross-section sample, and EDX images, respectively, providing the structure of the surface. The result confirm that temperature treatment can damage the surface coating, this is proven by the shape of the crack in the coating.

Keywords

DSSC; morphology; spin coating; TiO2

Full Text:

PDF

References

  1. J. A. Castillo-Robles, E. Rocha-Rangel, J. A. Ramírez-De-león, F. C. Caballero-Rico, and E. N. Armendáriz-Mireles, “Advances on dye-sensitized solar cells (DSSCs) nanostructures and natural colorants: A review,” J. Compos. Sci., vol. 5, no. 11, pp. 1–25, 2021, doi: 10.3390/jcs5110288.
  2. E. Praveen, I. J. Peter, A. M. Kumar, K. Ramachandran, and K. Jayakumar, “Performance of phototronically activated chitosan electrolyte in rare-earth doped Bi2Ti2O7 nanostructure based DSSC,” Mater. Lett., vol. 276, p. 128202, 2020, doi: 10.1016/j.matlet.2020.128202.
  3. C. Joy, “A review-the potential of natural dyes for dye-sensitized solar cells,” Int J Innov Sci Res Technol, vol. 2, no. 10, pp. 579–584, 2017.
  4. O. Adedokun, K. Titilope, and A. O. Awodugba, “Review on Natural Dye-Sensitized Solar Cells (DSSCs),” Int. J. Eng. Technol. IJET, vol. 2, no. 2, p. 34, 2016, doi: 10.19072/ijet.96456.
  5. H. Wang et al., “W-doped TiO2 as electron transport layer for high performance solution-processed perovskite solar cells,” Appl. Surf. Sci., vol. 563, no. February, p. 150298, 2021, doi: 10.1016/j.apsusc.2021.150298.
  6. A. Supriyanto, D. G. Saputri, M. K. Bin Ahmad, A. H. Ramelan, and F. Ramadhani, “Significant efficiency improvement of TiO2:LEG4-Ag layer dye sensitized solar cells by incorporating small concentration of Ag,” Optik (Stuttg)., vol. 231, no. January, p. 166429, 2021, doi: 10.1016/j.ijleo.2021.166429.
  7. M. Rokhmat, E. Wibowo, Sutisna, Khairurrijal, and M. Abdullah, “Performance Improvement of TiO2/CuO Solar Cell by Growing Copper Particle Using Fix Current Electroplating Method,” Procedia Eng., vol. 170, pp. 72–77, 2017, doi: 10.1016/j.proeng.2017.03.014.
  8. C. P. Lee, C. T. Li, and K. C. Ho, “Use of organic materials in dye-sensitized solar cells,” Mater. Today, vol. 20, no. 5, pp. 267–283, 2017, doi: 10.1016/j.mattod.2017.01.012.
  9. C. Euvananont, C. Junin, K. Inpor, P. Limthongkul, and C. Thanachayanont, “TiO2 optical coating layers for self-cleaning applications,” Ceram. Int., vol. 34, no. 4, pp. 1067–1071, 2008, doi: 10.1016/j.ceramint.2007.09.043.
  10. D. G. Saputri, A. Supriyanto, M. K. Ahmad, N. E.-H. Diyanahesa, and F. Ramadhani, “Optical properties of dye DN-F05 as a good sensitizer,” J. Phys. Theor. Appl., vol. 3, no. 2, p. 43, 2019, doi: 10.20961/jphystheor-appl.v3i2.38145.
  11. Z. Gonzalez, J. Yus, A.J. Sanchez-Herencia, J. Dewalque, L. Manceriu, C. Henrist, B. Ferrari, “A colloidal approach to prepare binder and crack-free TiO2 multilayer coatings from particulate suspensions: Application in DSSCs“, Journal of the European Ceramic Society., vol. 39, issues 3-4, pp. 366-375, 2019, doi.org/10.1016/j.jeurceramsoc.2018.09.018.
  12. N.H. Shamsudin, S. Shafie, M.Z.A. Ab Kadir, F. Ahmad, A.R. Sadrolhosseini, Y. Sulaiman, S.A.M. Chachuli, “Power conversion efficiency (PCE) performance of back-illuminated DSSCs with different Pt catalyst contents at the optimized TiO2 thickness“, Optik., vol. 203, ISSN 0030-4026, 2020, doi.org/10.1016/j.ijleo.2019.163567.
  13. K. Gossen, A. Ehrmann, “Influence of FTO glass cleaning on DSSC performance“, Optik, vol.183, pages 253-256, ISSN 0030-4026, 2019, doi.org/10.1016/j.ijleo.2019.02.041.
  14. S. A. Abrol, C. Bhargava, P. K. Sharma, “Material and its selection attributes for improved DSSC“, Materials Today: Proceedings, vol 42, Part 2, Pages 1477-1484, ISSN 2214-7853, 2021, doi.org/10.1016/j.matpr.2021.01.312.
  15. H. M. A. Javed, A. A. Qureshi, R. Mehmood, M. I. Tahir, S. Javed, M. Sarfaraz, M. Y. Javaid, M. Awais, U. Ali, “Hydrogen treated TiO2 nanoparticles onto FTO glass as photoanode for dye-sensitized solar cells with remarkably enhanced performance“, International Journal of Hydrogen Energy, vol 46, Issue 27, Pages 14311-14321, ISSN 0360-3199, 2021, doi.org/10.1016/j.ijhydene.2021.01.184.
  16. S. C. Yadav, A. Sharma, R. S. Devan, P. M. Shirage, “Role of different counter electrodes on performance of TiO2 based dye-sensitized solar cell (DSSC) fabricated with dye extracted from Hibiscus Sabdariffa as sensitizer“, Optical Materials, vol. 124, 112066, ISSN 0925-3467, 2022, https://doi.org/10.1016/j.optmat.2022.112066.
  17. J. H. Cheon, S. A. Kim, K-S. Ahn, M-S. Kang, J. H. Kim, “Enhanced light-harvesting efficiency by Förster resonance energy transfer in quasi-solid state DSSC using organic blue dye“, Electrochimica Acta, vol 68, pages 240-245, ISSN 0013-4686, 2012, https://doi.org/10.1016/j.electacta.2012.02.069.
  18. J. Liu, Y. Li, S. Arumugam, J. Tudor, S. Beeby, “Screen Printed Dye-Sensitized Solar Cells (DSSCs) on Woven Polyester Cotton Fabric for Wearable Energy Harvesting Applications“, Materials Today: Proceedings, vol 5, Issue 5, part 3, pages 13753-13758, ISSN 2214-7853, 2018, doi.org/10.1016/j.matpr.2018.02.015.

Refbacks

  • There are currently no refbacks.