Comparison of Ni0.6Co0.4Fe2O4 and NiFe2O4 Nanoparticles for Magnetic Characteristics, Synthesized Using Co-Precipitation Method

Utari Utari, Yeni Herlina K. Dasi, Budi Purnama


Comparison of nickel Ni0.6Co0.4Fe2O4   and NiFe2O4 were studied. The co-precipitation method was performed for the whole sample. After annealing of 600°C for 4 hours, the nanoparticles samples evaluated their structural properties by using Fourier Transform Infra-Red (FTIR) and X-Ray Diffraction (XRD). The XRD pattern confirms that the whole samples have the crystalline structure of the face-centered cubic (fcc) inverse spinel. Furthermore, the lattice and crystallite size of NiFe2O4 increased when added Co2+. The FTIR spectrum showed two prominent absorption bands, i.e., at around k of 358 cm-1 and 588 cm-1, where metals at tetrahedral and octahedral sites reflect intrinsic vibrations, respectively.  Finally, the decrease of saturated magnetization MS from 22.2 emu/g and 9.92 emu/g replacement of Co2+ cation with Ni2+.


cobalt ferrite; nickel ferrite; co-precipitation; magnetic characteristic.

Full Text:



1 Sedlacik, M., Pavlinek, V., Peer P., & Filip P. 2014. Tailoring the magnetic properties and magnetorheological behavior of spinel nanocrystalline cobalt ferrit by varying annealing temperature. Dalton Trans., 43 (18), 6919–6924.

2 Carvalho, F.E., Lemos, L.V., Migliano, A.C.C., Machado J.P.B., & Pullar R.C. 2018. Structural and complex electromagnetic properties of cobalt ferrite (CoFe2O4) with an addition of niobium pentoxide. Ceram. Int., 44, 915–921.

3 Lima, A.C., Peres, A.P.S., Araujo, J.H., Morales, M.A., Medeiros, S.N., Soares, J.M., Melo, D.M.A., & Carrico, A.S. 2015. The effect of Sr2+ on the structure and magnetic properties of nanocrystalline cobalt ferrite. Materials Letters, 145, 56-58.

4 Routray, K.L., Sahoo, B., & Behera, D. 2018. Structural, dielectric and magnetic properties of nano sized CoFe2O4 employing various synthesis techniques for high frequency and magneto recording devices: a comparative analysis. Mater. Res. Express. 5, 085016.

5 Srinivasan, S.Y., Paknikar, K.M., Bodas, D., & Gajbhiye, V. 2018. Applications of cobalt ferrite nanoparticles in biomedical nanotechnology. Nanomedicine, 13, 1221–1238.

6 Al-Anazi, A., Abdelraheem, W.H., Han, C., Nadagouda, M.N., Sygellou, L., Arfanis, M.K., Falaras, P., Sharma, V.K., & Dionysiou, D.D. 2018. Cobalt ferrite nanoparticles with controlled composition-peroxymonosulfate mediated degradation of 2-phenylbenzimidazole-5 sulfonic acid. Appl. Catal. B Environ., 221, 266–279.

7 Anjum, S., Sehar, F., Bashir, F., Awan, M.S., & Mustafa, Z. 2015. Role of Bismuth in Cobalt Spinel Ferit. Materials Today: Proceedings, 2(10), 5182-5189.

8 Lima, A.C., Peres, A.P.S., Araujo, J.H., Morales, M.A., Mederios, S.N., Soares, J.M, Carrico, A.S. 2015. The Effect of Sr 2+ on the structure and magnetic properties of nanocrystalline cobalt ferit. Materials. Letter, 145, 56–58.

9 Kim, K.J., Park, J., & Park, J.Y. 2020. Cystallograpic and Magnetic Characreristics if Thim-film Ni0.5Co0.5Fe2O4 Ferrimagnet. Journal of Magnetics, 25(2),117-120.

10 Parishani, M., Cheragi, A., & Malekfar, R. 2015. Spectroscopy, Structural and Optical Investigations of NiFe2O4 Ferrite. International Journal of Optics and Photonics (IJOP), 9 (2), 73-78.

11 Bhise, R.B., Rathod, S.M., & Supekar, A.K. 2012. Synthesis and Characterization of nanocrystalline Ni-Co-Zn ferrite by Sol-gel Auto-Combustion Method. International Journal of Scientific & Engineering Research, 3 (12), 1-5.

12 Reddy, M.P., Madhuri, W., Sadhana, K., Kim, I. G., Hui, K.N., Hui, K.S., Kumar, K.V.S., & Reddy, R.R. 2014. Microwave sintering of Nickel Ferrite Nanoparticles Processed Via Sol-Gel Method. J. Sol-Gel Sci. Technol., 70 (3), 400-404.

13 Safarik, I., Horska, K., Pospiskova, K., Maderova, Z., Safarikova, M. 2012. Microwave assisted synthesis of magnetically responsive composite materials. IEEE Trans. Magn., 49, 213–218.

14 Lu Le, T., Dung Ngo, T., Tung Le, D., Thanh, C.T., Quy, O.K., Chuc, N.V., Maenosono, S., Thanh, N.T.K. 2015. Synthesis of magnetic cobalt ferrite nanoparticles with controlled morphology, monodispersity and composition: the influence of solvent, surfactant, reductant and synthetic conditions. Nanoscale, 7, 19596–19610.

15 Qasim, M., Asghar, K., Singh, B.R., Prathapani, S., Khan, W., Naqvi, A.H., Das, D. 2015. Magnetically recyclable Ni0.5Zn0.5Fe2O4/ Zn0.95Ni0.05O4 nano-photocatalyst: structural, optical, magnetic and photocatalytic properties. Spectrochim Acta A: Molecul Biomolecul Spect., 137, 1348–1356.

16 Stein, C.R., Bezerra, M.T.S., Holanda, G.H.A., Andre-Filho, J., Morais, P.C. 2018. Structural and magnetic properties of cobalt ferrite nanoparticles synthesized by co-precipitation at increasing temperatures. AIP Adv., 8:056303.

17 Safi, R., Ghasemi, A., Shoja-Razavi, R., & Tavousi,M. 2015.The role of pH on particle size and magnetic consequence of cobalt ferit. Journal of Magnetism and Magnetic Materials, 396, 288-294.


  • There are currently no refbacks.