Conversion of Oil Shale To Liquid Hydrocarbons as A New Energy Resources Using Iron (Fe)-Pillared Clay (Kaolinite) Catalyst

Ordas Dewanto, Istifani Ferucha, Darsono Darsono, Sri Rizky


In the context of new energy exploration, oil shale is currently a source of energy that is being developed so that it can be used as an alternative energy in the future. Based on this background, it is important to research the conversion method of oil shale to liquid hydrocarbons. The method used is using clay (kaolinite) catalyst and  iron (Fe)-pillared clay (kaolinite) catalyst. Clay catalyst products are capable of making organic mature faster and even requiring a lower temperature for the changes (through thermal cracking of non-volatile organic material). The addition of Fe metal in the clay catalyst product to oil shale, causing the surface area of the natural clays were significantly increased, then the volume of micro pore were also increased, it causes the organic material to mature faster and the temperature required for the change is less than the shale material without Fe. The catalyst method by the pillarization technique able to increase the surface area and pore volume, thus accelerating the reaction and changing the reaction rate to be greater. It is observed that clay catalyst products can serve as catalysts for accelerating organic maturation reactions. if compared between the clay material  of OD1-Ast1 (50% clay-50% organic), OD1-Ast2 (33% clay-67% organic), and the OD1-Ast3 shale material (67% clay - 33% organic),then OD1-Ast3 has a faster reaction rate. Comparison of clay material is smaller than organic, then the properties of the catalyst product to accelerate the reaction are reduced, such as the OD1-Ast2 shale material has a slow reaction rate compared to the OD1-Ast3 shale material. The addition of Fe metal in the clay catalyst product to the OD1-Ast2 shale material, resulting in OD1-Ast2-Fe shale material (75% OD1-Ast2 and 25% Fe) having a faster reaction rate than before the addition of Fe metal.The design of heavy (%) clay (kaolinite) and Fe pilaration on oil shale were greatly influence the change of TOC values when heated,then affecting maturation and Tmax. The temperature of maturation and Tmax as the main parameters of conversion of oil shale to liquid hydrocarbon. This method supports the development of science and technology in the field of exploitation and processing of natural resources.


oil shale; clay; iron (Fe)-pillared; maturation; TOC; Tmax

Full Text:



  1. Al-Hamaiedh, H., Maaitah, O., and Mahadin, S. 2010. Using Oil Shale Ash in Concrete Binder. EJGE Vol. 15, Bund. F. P. 601-608.
  2. Barkia, H., Belkbir, L. and Jayaweera, S.A.A. 2004. Thermal analysis studies of oil shale residual carbon. Journal of Thermal Analysis and Calorimetry. 76 (2), pp.615-622.
  3. Bartis, James T.; LaTourrette, Tom; Dixon, Lloyd; Peterson, D.J.; Cecchine, and Gary. 2005. (PDF). Oil Shale Development in the United States. Prospects and Policy Issues. Prepared for the National Energy Technology Laboratory of the U.S. Department of Energy.
  4. Berraja, T., Barkia, H., Belkbir, L., and Jayaweera, S.A.A. 1988. Thermal analysis studies of the combustion of Tarfaya oil shale. Proceeding of an International Conference on Carbon, Carbon'88, Eds. B. McEnnaney and T.J. Mays, Univ. Newcastle Upon Tyne, UK, 18-23.
  5. Burnham, Alan K.; McConaghy, and James R. 2006. "Comparison of the Acceptability of Various Oil Shale Processes" ( pdf) (PDF). 26th Oil Shale Symposium. Golden, Colorado: Lawrence Livermore National Laboratory. UCRL-CONF-226717. Retrieved 2007-06-23.
  6. Cahyadi and Yulianto, S.N. 2011. Studi Perilaku Penyalaan Partikel Batubara Indonesia Menggunakan Thermogravimetric Analysis Dalam Kondisi O2/n2 dan O2/CO2. Jurnal Ilmiah Teknologi Energi (JITE). Volume 1 Nomor 13Agustusi 2011, ISSN 1858 – 3466. Balai Besar Teknologi Energi-BPPT Jurnal Ilmiah Teknologi Energi.
  7. Catrinescu, C., Teodosiu, C., Macoveanu, M., Brendle, J.M., and Le Dred, R. 2002. Iron Containing Pillared Bentonites as Heterogeneous Fenton-Type Catalysts for The Oxidation Of Phenol In Wastewaters. Environmental Engineering and Management Journal. “Gh. Asachi” Technical University of Iasi, Romania. Vol.1, No.4, 561-569.
  8. Dewanto, O., Bahri, S. and Atmojo, J.P. 2008. Analisis Perubahan Sifat-Sifat Fisika Batuan Organik terhadap Aliran Panas Bumi di Daerah ‘X’ Sumatera, untuk Menentukan Kandungan dan Daerah Oil Shale sebagai Sumber Energi Baru. Prosiding Pertemuan Ilmiah Tahunan, HAGI 33rd Annual Convention & Exhibition, Hyatt Regency Bandung. ISBN: 978-979-8126-05-5.
  9. Dewanto, O., Mulyanto, B.S., Rustadi, and Wibowo, R.C. 2017. Determining the Temperature of Shale Material Conversion Into Crude Oil Based on Organic Clay and Organic Carbonate Test Outside Reservoir. International Journal of Mechanical and Mechatronics Engineering IJMME-IJENS. 173105-4848. Vol:17 No:05. P 84-89.
  10. Dewanto, O., Soegiyono, and B., Suharso. 2014. Comparison of Calcite (CaCO3) and Clay (Illite/Kaolinite) Toward the Influence of Maturation and Organic Material Potential for Processing of Oil Shale Material. International Journal of Basic & Applied Sciences IJBAS. Vol:14, No: 05. October 2014.
  11. Eman A. and Emam. 2013. Clays as Catalysts in Petroleum Refining Industry. ARPN Journal of Science and Technology. Vol.3, No.4, ISSN: 2225-7217. Department of Petroleum Refining Eng. and Petrochemicals, Faculty of Petroleum and Mining Eng., Suez University, Suez, Egypt.
  12. Himawanto, D.A. 2011. Penentuan Energi Aktivasi Pembakaran Briket Char Sampah Kota dengan Menggunakan Metoda Thermogravimetry dan Iso Thermal Furnace. Jurnal Teknik Mesin Rotasi. Vol. 15, No. 3, hal: 35−42.
  13. Himawanto, D.A., Indarto, Saptoadi, H. and Rohmat, T.A. 2013. Thermogravimetric Analysis of Single-Particle RDF Combustion. Modern Applied Science: Vol. 7, No. 11. Hal: 34. ISSN 1913-1844 E-ISSN 1913-1852.
  14. Huan-Yan Xu, Xiu-Lan He, Ze Wu, Lian-Wei Shan, and Wei-Dong Zhang. 2009. Iron-loaded Natural Clay as Heterogeneous Catalyst for Fenton-like Discoloration of Dyeing Wastewater. Bull. Korean Chem. Soc., Vol.30, No.10.
  15. Indrati T.Y., Hartati, P., and Murdani. 2000. Penentuan Energi Aktivasi Sinter Pelet (Th,U)O2 Pada Tahap Pertumbuhan Butir. Prosiding Penemuan dan Presentasi Ilmiah Penelitian Dasar IImu Pengetahuan dan Teknologi Nuklir. P3TM-BATAN Yogyakarta. 25.
  16. Kantsler, A.J., Cook, A.C., and Smith, G.C. 1978. Rank variation, calculated paleotemperatures in understanding oil, gas occurrence. Oil and Gas Journal. No. 20, p.196-205.
  17. Katarzyna Slopiecka, Pietro Bartocci, and Francesco Fantozzi. 2011. Thermogravimetric analysis and Kinetic study of poplar wood pyrolysis. Third International Conference on Applied Energy. Perugia, Italy. pages 1687-1698.
  18. Koel and Mihkel. 1999. "Estonian oil shale" ( htm). Oil Shale. A Scientific-Technical Journal (Estonian Academy Publishers) (Extra). ISSN 0208-189X. Retrieved 2007-07-21.
  19. Malika. A., Mohammed, A. and Boukhlifi, A. 2014. Kinetic And Energy Study Of Thermal Degradation Of Biomass Materials Under Oxidative Atmosphere Using TGA, DTA And DSC. Journal of Multidisciplinary Engineering Science and Technology (JMEST). ISSN: 3159-0040 Vol. 1 Issue 5, December 2014.
  20. Martono, Y., Sari, Y.E.P., and Hidarto, J. 2012. Penggunaan Model Arrhenius Untuk Pendugaan Masa Simpan Produk Minuman Kemasan Berdasarkan Kandungan Vit C. Paper. Program Studi Kimia, Fakultas Sains dan Matematika. Universitas Kristen Satya Wacana.
  21. Minarsih, T. 2011. Penentuan Energi Aktivasi Amlodipin Besilat Pada pH 1, 6 Dan 10 Dengan Metode Kromatografi Cair Kinerja Tinggi. PHARMACY. Vol.06 No.01 Agustus 2011. ISSN 1693-3591.
  22. Nagendrapa, G. 2002. Organic Syntesis using Clay Catalyst. J. Resonance. p: 64-77.
  23. Riyanto, S. 2009. Uji Kualitas Fisik Dan Uji Kinetika Pembakaran Briket Jerami Padi Dengan Dan Tanpa Bahan Pengikat. Skripsi. Jurusan Teknik Mesin Fakultas Teknik Universitas Sebelas Maret Surakarta.
  24. Sato, K., Takizawa, S. and Mohri, T. 2010. Theoretical Calculation of Activation Free Energy for Self-Diffusion in Prototype Crystal. Materials Transactions, The Japan Institute of Metals. Vol. 51, No. 9 (2010) pp. 1521 to 1525.
  25. Subono, S. and Siswoyo. 1995. Thermal Studies of Indonesian Oil Basin. CCOP Technical Bulletin. March, Vol. 25, pp. 37 to 54.
  26. Sugondo. 2012. Kinetika Pertumbuhan Butir Paduan Zry-4 Sn Rendah. Urania. Vol. 18 No. 3. Hal: 120-181. ISSN 0852-4777.
  27. Sukma, H.L. 2012. Analisis Thermogravimetry Dan Pembuatan Briket Tandan Kosong Dengan Proses Pirolisis Lambat. Tugas Akhir Konversi Energi. Fakultas Teknologi Industri. Institut Teknologi Sepuluh Nopember Surabaya.
  28. Suyitno. 2009. Perumusan Laju Reaksi dan Sifat-Sifat Pirolisis Lambat Sekam Padi Menggunakan Metode Analisis Termogravimetri. Jurnal Teknik Mesin Vol. 11, No. 1, 12-18. UNS, Surakarta.
  29. Widjaya, R.R. 2012. Bentonit Pilarisasi Cr dan Zeolit HZSM-5 Sebagai Katalis Pada Proses Konversi Ethanol Menjadi Biogasolin. Tesis S2. Program Studi Ilmu Material Pascasarjana Fakultas Matematika Dan Ilmu Pengetahuan Alam. Universitas Indonesia.
  30. Xiufeng Xu, Yanfei Pan, Xiaoyan Cui, and Zhanghuai Suo. 2004. Catalytic Combustion of Methane Over Ti-Pillared Clay Supported Copper Catalysts. Journal of Natural Gas Chemistry. Vol. 13 No.4.
  31. Yan Y.F., Zhang Z.E., Zhang L. and Zhang L. 2014. Influence of coal properties on the co-combustion characteristics of low-grade coal and city mud. Global NEST Journal. Vol. 16, No 2. pp 329-338. Printed in Greece. All rights reserved.
  32. Youngquist and Walter. 1998. "Shale Oil-The Elusive Energy" ( news/Youngquist_ 98-4. pdf) (PDF). Hubbert Center Newsletter (Colorado School of Mines) (4). Retrieved 2008-04-1


  • There are currently no refbacks.