Characterization of Magnetic Minerals of Iron Sand Pasia Nan Tigo Padang Beach Using X-Ray Diffraction (XRD)

Ardilla Nofri Yuwanda, Riza Rahmayuni, Dwi Anisa Visgun, Anisa Rahmi, Hamdi Rifai, Letmi Dwiridal

Abstract

The mineral extraction of iron sand from Pasia Nan Tigo Beach has been carried out. Iron sands in this area are widely spread and have decent potential but have not been used optimally. The iron sand of Pasia Nan Tigo Beach contains minerals that are indicated by the variation in susceptibility values of type 265.8×10-8m3/kg to 12,445.53×10-8m3/kg. Therefore, it is necessary to separate minerals from iron sand so that the minerals contained in them are known so that they are suitable for usability. The iron sand obtained is extracted using two magnets, namely a strong magnet and a weak magnet. The extraction results from iron sand still contain impurities to remove them, the sand is purified and then the sand extraction results are characterized using the XRD method. Content The type and structure of the mineral species found in the samples extracted from iron sand using strong magnets are Magnetite (Fe3O4) with Cubic structure, Hematite (α-Fe2O3) with Hexagonal structure, and Ilmenite (FeTiO3) with Hexagonal structure. While the use of weak magnets is Magnetite (Fe3O4) with Cubic structure, Hematite (α-Fe2O3) with Rhombohedral structure, and Ilmenite (FeTiO3) with Rhombohedral structure. Meanwhile, the non-magnetic mineral namely Quartz (SiO2), works as an impurity. The average crystal size using a strong magnet for PNT-B01 0-5 cm is 100.85 nm and a weak magnet is 49.36 nm, sample A06 30-35 cm uses a strong magnet of 88.25 nm and a weak magnet of 46, 80 nm, meanwhile sample B10 0-5 cm with a strong magnet of 109.22 nm and a weak magnet of 45.60 nm.

Keywords

extraction; magnetic minerals; iron sand; crystal size; pasia nan tigo.

Full Text:

PDF

References

1 Karimah & Irjan, I. 2020. Investigation The prospect of Iron Sand in Sungai Topo Hamlet, Sungai Teluk Village, Sangkapura District, Gresik Regency using the Magnetic Method. J. Fis. Indonesia, 22 (1), 17.

2 Setiawati, L. D., Rahman, T.P., Nugroho, D.W., Ikono, R., & Rochman, T. 2013. Extraction Of Titanium Dioxide (Tio2) From Iron Sand Using Hydrometallurgy Method. Semirata FMIPA Univ. Lampung, 465–468.

3 Mufit Fatni, Satria. B., Harman, Amir., Fadhilah. 2013. Kaitan Sifat Magnetik Dengan Tingkat Kehitaman (Darkness) Pasir Besi Di Pantai Masang Sumatera Barat. Eksakta, 2, 70–75.

4 Aditia, E. 2019. Making Community Based Rw Profiles in Pasie Nan Tigo Village, Koto Tangah District, Padang City. J. Abdimas, 22 (2), 167–178.

5 Setianto, B., Santosa, D., Hidayat, & Panatarani, C. 2017. Quantitative Analysis of Mixture of Oxide Compounds as a Basis for Identifying Content of Natural Resources, Exacta, 18 (2), 173–177.

6 Afdal, A., & Islami, E. N. 2015. Karakterisasi Magnetik Batuan Besi Dari Bukit Barampuang, Nagari Lolo, Kecamatan Pantai Cermin, Kabupaten Solok, Sumatera Barat. SEMIRATA, 2(1).

7 Afdal, A. 2013. Characterization of Magnetic Properties and Mineral Content of Iron Sand in the Batang Kuranji River Padang, West Sumatra. J. Fis.Univ. Andalas, 5 (1), 24–30.

8 Muhammad, A., Halim, Y., Urrilijanto, U., & Manaf A, 2000. Early studies on the development of iron sand for the coast of Aceh as a raw material for the manufacture of magnetic materials. Pros. Simp. Fis. National, Puspiptek-Serpong, 25–27.

9 Rifai, H., Erni, & Irvan, M. 2010. Magnetic Extraction of Methanol-Soap Bathed Muds. J. Researchers. Science, 14, 25–28.

10 Irvan, M., Bijaksana, S., & Hamdi, H. 2010. Identifikasi Mineral Magnetik Pada Tinta Kering (Toner). EKSAKTA, 2. 32-39.

11 Mürbe, A. Rechtenbach, & Töpfer, J. 2008. Synthesis and physical characterization of magnetite nanoparticles for biomedical applications. Mater. Chem. Phys., 110 (2–3), 426–433.

12 Minaei, S. E., Khoei, S., Khoee, S., Vafashoar, F., & Mahabadi, V. P. 2019. In vitro anti-cancer efficacy of multi-functionalized magnetite nanoparticles combining alternating magnetic hyperthermia in glioblastoma cancer cells. Mater. Sci. Eng. C, 101, 575–587.

13 Yew, Y. P., Shameli, K., Miyake, M., Khairudin, N. B. B. A., Mohamad, S. E. B., Naiki, T., & Lee, K. X. 2020. Green biosynthesis of superparamagnetic magnetite Fe3O4 nanoparticles and biomedical applications in targeted anticancer drug delivery system: A review. Arab. J. Chem., 13 (1), 2287–2308.

14 Shinde, S. S., Bansode, R. A., Bhosale, C. H., & Rajpure, K. Y. 2011. Physical properties of hematite α-Fe2O3 thin films: Application to photoelectrochemical solar cells. J. Semicond., 32 (1), 1–8.

15 Yulianto, A., Sulhadi, S., Azis, A. L. I., & Dayati, E. 2013. Synthesis of iron sand into nano Mn-ferrite. Malaysian Journal of Fundamental and Applied Sciences, 9(4). 1-6.

16 Prasetyo, A. B., Prasetiyo, P., & Matahari, I. 2014. Making α-Fe2O3 from Iron Ore Processing Hematite Type Primer For Lithium Battery Raw Material. Maj. Metal., 179–189.

17 Yulianto, A., Bijaksana, S., Loeksmanto, W., & Daniel, K. 2003. The production of hematite (alpha-Fe2O3) from iron sand utilizes natural potential as an industrial material based on magnetic properties. Journal of Science Indonesian Material, 5 (1). 51–54.

18 Dearing, J. 1999. Environmental Magnetic Susceptibility: Using the Bartington MS2 System. British Library Cataloging in Publication Data.

19 Rifai, H., Putra, R., Fadila, M. R., Erni, E., & Wurster, C. M. 2018. Magnetic Susceptibility and Heavy Metals in Guano from South Sulawesi Caves. IOP Conf. Ser. Mater. Sci. Eng., 335 (1).

20 Sasmita, A., Rifai, H., Putra, R., Aisyah, N., Phua, M., Eisele, S., Forni, Fransesca., & de la Maisonneuve, C. B. 2020. Identification of magnetic minerals in the peatlands cores from Lake Above West Sumatra, Indonesia. J. Phys. Conf. Ser., 1481 (1).

21 Rusli, N. G. D., Hamdi, & Mufit, F. 2014. The Relationship between the Composition of Basic Elements of Magnetic Minerals and the Magnetic Susceptibility Value of Guano from Bau-Bau Cave, East Kalimantan. Pillar Phys., 4, 49–56.

22 Putra, R., Rifai, H., & Wurster, C. M. 2019. Relationship between magnetic susceptibility and elemental composition of Guano from Solek Cave, West Sumatra. J. Phys. Conf. Ser., 1185 (1).

23 Jahidin, Ngkoimani, L. O., & Bijaksana, S. 2011. Analisis Suseptibilitas Magnetik Batuan Ultrabasa di Desa Mosolo Pulau Wawonii Provinsi Sulawesi Tenggara. Paradigma. 15(2). 105-112

24 Aji, M. P., Yulianto, A., & Bijaksana, S. 2007. Synthesis Nano Particles Magnetite, Maghemite and Hematite from Local Materials. J. Mater Science. Indonesia., 106–108.

25 Haryani, H., & Utama, L. 2016. Revitalization Of Coastal Area Pasie Nan Tigo Padang City For Hazard Mitigation. MIMBAR: Jurnal Sosial dan Pembangunan, 32(1), 49-57.

26 Mukhriani. 2014. Extraction, Separation Of Compounds, And Identification Of Active Compounds. J. Kesehat., 7 (2).

27 Cullity, B. D. 1956. Elements of X-ray Diffraction. Addison-Wesley Publishing.

28 Afriyeni, P. Rifai, H., Maisonneuve, C. B., Forni, F., Eisele, S., Phua, M., & Putra, R. 2020. Identification of magnetic minerals in peatland at the section of DD REP B 693 lake Above using XRD (X-ray Diffraction). J. Phys. Conf. Ser., 1481 (1), 1-7.

29 Pertama, D. Y. 2014. Identification of Guano Magnetic Mineral Types from Bau-Bau Cave, East Kalimantan, using x-ray diffraction (XRD). Pillar Of Physics, 4(2), 25–31

30 Dewi, S. H. & Adi, W. A. 2018. Synthesis and characterization of high purity Fe3O4 and α - Fe2O3 from local iron sand. J. Phys. Conf. Ser., 1091 (1), 0–9.

31 Puspitarum, D. L., Safitri, G., Ardiyanti, H., & Anrokhi, M. S. 2019. Characterization And Nature Of Iron Sand In The Central Lampung Region. J. Educator. Fis., 7 (2), 236.

32 Yulianto, A., Bijaksana, S., & Loeksmanto, W. 2003. Comparative Study on Magnetic Characterization of Iron Sand from Several Locations in Central Java. Indones. J. Phys., 14 (2), 63–66.

33 Fajri, R. N., Putra, R., Afriyeni, P., De Maisonneuve, C., Phua, M., Eisele, S., Forni, Fransesca., & Rifai, H. 2020. Analyzing magnetic susceptibility and elemental composition of rocks and soil around Lake Diatas, West Sumatra, Indonesia. J. Phys. Conf. Ser., 1481 (1).

Refbacks

  • There are currently no refbacks.