Kajian Energi Gelombang Laut Di Daerah Abrasi Serangai, Bengkulu Utara Melalui Pengamatan Tinggi Gelombang Laut
Abstract
The Serangai area, Batik Nau District, North Bengkulu has the highest average abrasion speed of 20 m/year. The abrasion could cause the coastal area to erode the coastline till several tens of meters. The purpose of this study was to determine the height of the ocean waves and to determine the energy of the ocean waves that has the potential to accelerate the abrasion process in the Serangai area. The research was carried out on November 5-7, 2018 in the Serangai beach area at a depth of 5 m using SBE 26 Plus Seagauge Wave equipment. The results showed that the observed wave height was between 0.8-1.6 m with a significant wave height (Hs) of 1.38 m. In addition, the wave period ranges from 5-11 s with a significant wave period (Ts) of 8.2 s. The result also shows that the maximum wave height of 1.6 m occurred on November 7, 2018 with maximum wave energy of 1800 J/m2. This result can perhaps accelerate the abrasion process in the Serangai area. It can also be seen that the wave height in the Serangai region is higher than in several other areas in Indonesia. However, it is necessary to continue observing the wave height to see the seasonal variations in sea wave height in Serangai area.
Keywords
Full Text:
PDFReferences
1 Lubis, A.M., Hanapi, R., Sinaga, J., Samdara, R., dan Harlianto, B. 2021. Investigasi Perubahan Garis Pantai di Daerah Abrasi Pantai Bengkulu Utara dengan Menggunakan Teknologi Unmanned Aerial Vehicle (UAV), under review, Majalah Globe.
2 Samdara, R. 2014. Laju Perubahan Muka Air Laut Di Wilayah Perairan Pantai Bengkulu Dengan Menggunakan Satelit Altimetry. Jurnal Fisika FLUX, 11 (2), 197-203.
3 Church J, dan White, N. 2006. A 20th Century acceleration in global sea-level rise, Geophysical Research Letters, 33 (1), L01602.
4 Church J, dan White, N. 2011. Sea-level rise from the late 19th to the early 21st Century. Surveys in Geophysics, 32, 585-602.
5 Williams, S.J. 2013. Sea level rise implications for coastal regions. Journal of Coastal Research, 63, 10063, 184–196.
6 Wahyudi, Solihin dan Ferry, S. 2005. Pengaruh Spektrum Gelombang Terhadap StabilitasBatu Pecah pada Permukaan Cellular CofferdamAkibat Gelombang Overtopping. Jurnal Teknologi Kelautan, 9 (1), 9-17.
7 Cruz, J. 2008. Ocean wave energy: current status and future perspectives. Heidelberg: Springer, hal. 220-241.
8 Holthuijsen, L.H. 2007. Waves in Oceanic and Coastal Waters. Cambridge University Press, hal. 1- 404. ISBN 0521860288.
9 Jejen, H., Jenhar, Yusuf, M., dan Indrayat, M. 2103. Dinamika Penjalaran Gelombang Menggunakan Model CMS-Wave Di Pulau Parang Kepulauan karimun Jawa. Jurnal Oseanografi, 2 (3), 255-264.
10 Mizan, A.Z., Indra, P.B., Denny, S.N., Agus, S.A., Heriyosi, S., dan Petrus, S. 2019. Analisis Spektrum Gelombang Di Perairan Pulau Panjang. Indonesia Journal of Oceanography, 1 (1), 1-10.
11 Rahma, T.D., Rifai, A., dan Atmodjo, W. 2015. Dinamika Transformasi Gelombang Menggunakan Model CMS-Wave di Pantai Boom Tuban, Jawa Timur. Jurnal Oseanografi, 4 (1), 195-205.
12 Intan, M.R., Denny, S.N., dan Indrayati, E. 2012. Kajian Arus Sejajar Pantai (Longshore Current) Akibat Pengaruh Transformasi Gelombang di Perairan Semarang. Jurnal of Oceanografi, 1(2), 128-138.
13 Utami, S. 2012. Study Potensi Pembangkit Listrik Tenaga Gelombang Laut Dengan Menggunakan Sistem Ocilating Water Column (OWC) Di Tiga Puluh Wilayah Kelautan Indonesia. Universitas Indonesia. Depertemen Teknik Elektro.
14 Ryan, D.Y., Nugroho, D., dan Setiyono, H. 2015. AnalisiS Karakteristik Gelombang di Perairan Kabupaten Batu Bara, Sumatra Utara. Jurnal Oceanografi, 4 (2), 400-407.
15 Shintawati, W. D. 2019. Study Pembangkit Listrik Tenaga Gelombang Laut Sistem Ocilating Water Coumn (OWC) di Kelautan Indonesia. Skripsi, Program Studi Elektro, Universitas Muhamadiyah Surakarta.
16 Lubis, A.M., Veronica N., Saputra R., Sinaga J., Hasanuddin, M., dan Kusmanto, E. 2020. Investigasi Arus Sejajar Pantai (Longshore Current) di Daerah Abrasi Bengkulu Utara. Jurnal Kelautan Tropis, 23 (3), 316-324.
17 Dronkers, J. 2005. Dynamics of Coastal Systems, World Scientific, Singapore.
18 Ahdannabiel, H., Widada, S., dan Hariadi. 2017. Distribusi Sedimen Dasar Akibat Arus Sejajar Pantai di Sekitar Groin di Perairan Pantai Widuri Pemalang. Jurnal Oseanografi, 6 (4), 650-658.
19 Labania, H.M.D., Sunarto dan Khakhim, N. 2018. Variabilitas Musiman Gelombang dan Arus Laut di Perairan Pantai Lembasada, Kabupaten Donggala. Gravitasi, 17 (10), 1-10.
20 Horikawa, K. 1988. Nearshore Dynamics and Coastal Process. Theory, Measurement and Predictive Model, University of Tokyo Press.
Refbacks
- There are currently no refbacks.