Pemetaan potensi geothermal Seulawah Agam berdasarkan data DEMNAS dan Landsat 8

Faisal Abdullah, Muhammad Yanis, Anshar Vahreza, Muhammad Isa, Nasrullah Zaini

Abstract

Seulawah Agam is one of the volcanoes for geothermal energy development with an estimated 150 Mwe. At the exploration stage, thermal and multispectral image analysis is needed for surface temperature calculations, subsurface temperature modeling, and geothermal potential mapping of volcanoes. In this study, we used Landsat 8 and DEMNAS data to analyze the distribution of potential geothermal areas in the Seulawah Agam. Based on analysis of Fault Fracture Density (FFD) from DEMNAS, three classifications reflect the distance of the fault, namely low level (0 - 0.30 km/km2), medium (0.30-0.60 km/km2), and high (0.60-0.90 km/km2), where the distribution of geothermal potential is at medium and high-density levels. Meanwhile, the NDVI, NDWI data analysis shows dense vegetation areas on volcanoes and relatively rare in some manifestations. It can also be confirmed well by the high-temperature distribution in some craters between 34.63 C to 46.59 C. Based on observational data. It shows that DEMNAS and Landsat 8 data are very potential to be used as an initial method of analyzing the distribution of geothermal potential on the Seulawah Agam volcano.

Keywords

DEMNAS, Landsat 8, Geothermal, Fault Fracture Density

Full Text:

PDF

References

  1. M. P. Hochstein and S. Sudarman, “History of geothermal exploration in Indonesia from 1970 to 2000,” Geothermics, vol. 37, no. 3, pp. 220–266, Jun. 2008, doi: 10.1016/j.geothermics.2008.01.001.
  2. [2] Marwan, M. Yanis, Muzakir, and G. S. Nugraha, “Application of QR codes as a new communication technology and interactive tourist guide in Jaboi, Sabang,” in IOP Conference Series: Materials Science and Engineering, Apr. 2020, vol. 796, no. 1, doi: 10.1088/1757-899X/796/1/012025.
  3. M. Yanis, N. Ismail, and F. Abdullah, “Shallow Structure Fault and Fracture Mapping in Jaboi Volcano, Indonesia, Using VLF–EM and Electrical Resistivity Methods,” Nat. Resour. Res., vol. 31, no. 1, pp. 335–352, Feb. 2022, doi: 10.1007/s11053-021-09966-7.
  4. M. Yanis, I. Novari, N. Zaini, Marwan, A. Y. Pembonan, and Nizamuddin, “OLI and TIRS Sensor Platforms for Detection the Geothermal Prospecting in Peut Sagoe Volcano, Aceh Province, Indonesia,” in 2020 International Conference on Electrical Engineering and Informatics (ICELTICs), Oct. 2020, pp. 1–6, doi: 10.1109/ICELTICs50595.2020.9315378.
  5. Marwan, M. Yanis, R. Idroes, and N. Ismail, “2D inversion and static shift of MT and TEM data for imaging the geothermal resources of Seulawah Agam Volcano, Indonesia,” Int. J. GEOMATE, vol. 17, no. 62, 2019, doi: 10.21660/2019.62.11724.
  6. Marwan et al., “Mapping of Fault and Hydrothermal System beneath the Seulawah Volcano Inferred from a Magnetotellurics Structure,” Energies, vol. 14, no. 19, p. 6091, Sep. 2021, doi: 10.3390/en14196091.
  7. N. Zaini, M. Yanis, Marwan, M. Isa, and F. van der Meer, “Assessing of land surface temperature at the Seulawah Agam volcano area using the landsat series imagery,” in Journal of Physics: Conference Series, 2021, vol. 1825, no. 1, doi: 10.1088/1742-6596/1825/1/012021.
  8. R. Idroes et al., “Geochemistry Exploration and Geothermometry Application in the North Zone of Seulawah Agam, Aceh Besar District, Indonesia,” Energies, vol. 12, no. 23, p. 4442, Nov. 2019, doi: 10.3390/en12234442.
  9. Marwan, “Deep And Shallow Structures of Geothermal Seulawah Agam Based on Electromagnetic And Magnetic Data,” Int. J. GEOMATE, vol. 16, no. 53, Jan. 2019, doi: 10.21660/2019.53.17214.
  10. Marwan, M. Yanis, R. Idroes, and N. Ismail, “2D inversion and static shift of MT and TEM data for imaging the geothermal resources of Seulawah Agam Volcano, Indonesia,” Int. J. GEOMATE, vol. 17, no. 62, pp. 173–180, Oct. 2019, doi: 10.21660/2019.62.11724.
  11. Q. Qin, N. Zhang, P. Nan, and L. Chai, “Geothermal area detection using Landsat ETM+ thermal infrared data and its mechanistic analysis-A case study in Tengchong, China,” Int. J. Appl. Earth Obs. Geoinf., 2011, doi: 10.1016/j.jag.2011.02.005.
  12. M. B. Mia, Y. Fujimitsu, and J. Nishijima, “Exploration of hydrothermal alteration and monitoring of thermal activity using multi-source satellite images: A case study of the recently active Kirishima volcano complex on Kyushu Island, Japan,” Geothermics, 2019, doi: 10.1016/j.geothermics.2019.01.006.
  13. Lewis, G. E. Hilley, and J. L. Lewicki, “Integrated thermal infrared imaging and structure-from-motion photogrammetry to map apparent temperature and radiant hydrothermal heat flux at Mammoth Mountain, CA, USA,” J. Volcanol. Geotherm. Res., 2015, doi: 10.1016/j.jvolgeores.2015.07.025.
  14. M. B. Mia, J. Nishijima, and Y. Fujimitsu, “Exploration and monitoring geothermal activity using Landsat ETM+images. A case study at Aso volcanic area in Japan.,” J. Volcanol. Geotherm. Res., 2014, doi: 10.1016/j.jvolgeores.2014.02.008.
  15. M. Yanis, A. H. Anggini, F. Abdullah, M. Zainal, and M. Abubakar, “Application of Unmanned Aerial Vehicle as a Base Map Layer In Near-Surface Geophysics,” J. Geogr., vol. 13, no. 1, pp. 26–36, Feb. 2021, doi: 10.24114/JG.V13I1.17818.
  16. J. D. Bennett et al., “The Geology of the Aceh Quadrangle, Sumatra-Geological Research and Development Centre, Bandung,” Explan. note, p. 19, 1981.
  17. M. Yanis et al., “Geophysical and Geotechnical Approaches in Developing Subsurface Model for Gas Power Plant Foundation,” Indian Geotech. J., 2021, doi: 10.1007/s40098-021-00559-y.
  18. D. H. Natawidjaja and W. Triyoso, “The Sumatran fault zone—From source to hazard,” J. Earthq. Tsunami, vol. 1, no. 01, pp. 21–47, 2007.
  19. N. Ismail, M. Yanis, S. Idris, F. Abdullah, and B. Hanafiah, “Near-Surface Fault Structures of the Seulimuem Segment Based on Electrical Resistivity Model,” 2017, doi: 10.1088/1742-6596/846/1/012016.
  20. M. Yanis, F. Abdullah, N. Zaini, and N. Ismail, “The northernmost part of the Great Sumatran Fault map and images derived from gravity anomaly,” Acta Geophys., vol. 69, no. 3, pp. 795–807, Jun. 2021, doi: 10.1007/s11600-021-00567-9.
  21. M. Yanis, A. Faisal, A. Yenny, Z. Muzakir, M. Abubakar, and I. Nazli, “Continuity of Great Sumatran Fault in the Marine Area revealed by 3D Inversion of Gravity Data,” J. Teknol., vol. 83, no. 1, pp. 145–155, Dec. 2020, doi: 10.11113/jurnalteknologi.v83.14824.
  22. Yanis, M. Marwan, and N. Ismail, “Efficient Use of Satellite Gravity Anomalies for mapping the Great Sumatran Fault in Aceh Province,” Infonesian J. Appl. Phys., vol. 9, no. 02, p. 61, Dec. 2019, doi: 10.13057/ijap.v9i2.34479.
  23. Marwan, R. Idroes, M. Yanis, G. M. Idroes, and Syahriza, “A Low-Cost UAV Based Application For Identify and Mapping a Geothermal Feature in Ie Jue Manifestation, Seulawah Volcano, Indonesia,” Int. J. GEOMATE, vol. 20, no. 80, pp. 135–142, 2021, doi: 10.21660/2021.80.j2044.
  24. USGS, “Landsat 8 (L8) Data Users Handbook,” 2015.
  25. J. A. Sobrino, J. C. Jiménez-Muñoz, and L. Paolini, “Land surface temperature retrieval from LANDSAT TM 5,” Remote Sens. Environ., 2004, doi: 10.1016/j.rse.2004.02.003.
  26. D. A. Artis and W. H. Carnahan, “Survey of emissivity variability in thermography of urban areas,” Remote Sens. Environ., 1982, doi: 10.1016/0034-4257(82)90043-8.
  27. J. Hogg, “Quantitative remote sensing of land surfaces,” Photogramm. Rec., 2004, doi: 10.1111/j.0031-868x.2004.295_1.x.

Refbacks

  • There are currently no refbacks.