Karakterisasi Muatan Nanopartikel Silika (SiO2) dengan Metode Elektroforesis

Purwoko Haryadi Santoso, Yohanes Kurniawan, Havid Noor Pamungkas, Suparno Suparno

Abstract

Electrophoresis is one of the experimental methods employed in this study to characterize unique properties of charges of silica nanoparticles (SiO2) by observing their electrophoretic phenomena while they are situated in the electric field. This study is aimed to measure one of the SiO2 properties, namely the charge, using electrophoresis method through the variation of electric fields. The charge dependencies of SiO2 was probed towards five times variation of electric fields 1000, 1250, 1500, 1750, and 2000 V/m in 20 mL of aquades. The displacement of SiO2 could be observed through the light microscope with 160x magnification which the recorded observations then were analyzed by timeline-based software to measure the displacement time of particles during the observation. The results revealed that silica nanoparticles have the kind of positive charges in the colloidal solution. It is caused the magnitude of SiO2 charges is ranged constantly despite the variational effect of electric field in the environment. Light microscope has been optimized in this study to measure the velocity of SiO2 that tends to increase with respect to the magnifying electric fields given in the experiment.

Keywords

charge characterization; silica nanoparticles; electrophoresis

Full Text:

PDF

References

Zougagh, M. & Ríos, Á. 2009. Micro-electromechanical sensors in the analytical field. Analyst, Vol 134, No. 7, Hal. 1274-1290.

Amalia, R.F., Purwaningsih, H., Susanti, D. & Pratiwi, V.M., 2020. Analisis Pengaruh Rasio Pelarut Etanol Terhadap Kinerja Nanopartikel Silika Mesopori dari Sekam Padi sebagai Material Pengantar Obat. Jurnal Teknik ITS, Vol. 9, No. 1, Hal. F66-F71.

Wahyudi, B. & Muljani, S., 2019. Pupuk Multinutrient Berbasis Silika Dari Limbah Geothermal Sludge Dengan Proses Asidifikasi. Jurnal Teknik Kimia, Vol. 14, No. 1, Hal. 22-27.

Keti, Y., Eko, S., Diah, A.A., Yoyon, W. & Dita, W., 2015. Pengaruh kombinasi silika dan kitosan berbasis nanoteknologi sebagai bahan dasar pembuatan pupuk nano slow release terhadap penyerapan unsur hara oleh tanamandalam meningkatkan hasil pertanian di indonesia. Artik. Ilm. Teknol. Kim. dan Ind.

Kah, M., Machinski, P., Koerner, P., Tiede, K., Grillo, R., Fraceto, L.F. & Hofmann, T., 2014. Analysing the fate of nanopesticides in soil and the applicability of regulatory protocols using a polymer-based nanoformulation of atrazine. Environmental Science and Pollution Research, Vol. 21, No. 20, Hal. 11699-11707.

Zougagh, M., Salghi, R., Dhair, S. & Rios, A., 2011. Nanoparticle-based assay for the detection of virgin argan oil adulteration and its rapid quality evaluation. Analytical and bioanalytical chemistry, Vol. 399, No. 7, Hal. 2395-2405.

Duncan, T.V., 2011. Applications of nanotechnology in food packaging and food safety: barrier materials, antimicrobials and sensors. Journal of colloid and interface science, Vol. 363, No. 1, Hal. 1-24.

Cushen, M., Kerry, J., Morris, M., Cruz-Romero, M. & Cummins, E., 2012. Nanotechnologies in the food industry–Recent developments, risks and regulation. Trends in food science & technology, Vol. 24, No. 1, Hal. 30-46.

Athinarayanan, J., Periasamy, V.S., Alsaif, M.A., Al-Warthan, A.A. & Alshatwi, A.A., 2014. Presence of nanosilica (E551) in commercial food products: TNF-mediated oxidative stress and altered cell cycle progression in human lung fibroblast cells. Cell biology and toxicology, Vol. 30, No. 2, Hal. 89-100.

Yamashita, K., Yoshioka, Y., Higashisaka, K., Mimura, K., Morishita, Y., Nozaki, M., Yoshida, T., Ogura, T., Nabeshi, H., Nagano, K. & Abe, Y., 2011. Silica and titanium dioxide nanoparticles cause pregnancy complications in mice. Nature nanotechnology, Vol. 6, No. 5, Hal. 321-328.

Pereira, M., Lai, E.P. & Hollebone, B., 2007. Characterization of quantum dots using capillary zone electrophoresis. Electrophoresis, Vol. 28, No .16, Hal. 2874-2881.

Li, B.Y., Hu, Y., Liang, Y.Z., Xie, P.S. & Du, Y.P., 2004. Quality evaluation of fingerprints of herbal medicine with chromatographic data. Analytica Chimica Acta, Vol. 514, No. 1, Hal. 69-77.

Vanifatova, N.G., Spivakov, B.Y., Mattusch, J., Franck, U. & Wennrich, R., 2005. Investigation of iron oxide nanoparticles by capillary zone electrophoresis. Talanta, Vol. 66, No.3, Hal. 605-610.

Ducatte, G.R., Ballou, N.E., Quang, C. & Petersen, S.L., 1996. Separation and characterization of oxide particles by capillary electrophoresis. Journal of Microcolumn Separations, Vol. 8, No. 6, Hal. 403-412.

Vanifatova, N.G., Spivakov, B.Y., Mattusch, J. & Wennrich, R., 2003. Size separation of silica nanospheres by means of capillary zone electrophoresis. Talanta, Vol. 59, No. 2, Hal. 345-353.

S. Ardiani, 2013. Menentukan Muatan Partikel Titania dalam Larutan KCl dengan Teknik Elektrofiresis. J. Pendidik. Fis. UNY,

D. P. Astuti, 2013. Mobilitas Partikel Titania (TiO2) dengan Variasi Tegangan dan Variasi Konsentrasi Larutan KCl Menggunakan Metode Elektroforesis,” J. Pendidik. Fis. UNY.

Harvey, D., 2000. Modern analytical chemistry (Vol. 1). New York: McGraw-Hill.

Patnaik, P., 2004. Dean’s analytical chemistry handbook. McGraw-Hill Education.

Nuri, N., Bijanto, B., Proborini, E. & Rachmawanto, E.H., 2020. Penentuan Jenis Muatan Sel Darah Merah melalui Metode Dielektroporesis. Variabel, Vol. 3, No. 1, Hal. 5-11.

Perry, J.L. & Kandlikar, S.G., 2006, January. Investigation of fouling in microchannels. In The 4th International Conference on Nanochannels, Microchannels, and Minichannels, Vol. 47608, Hal. 837-845.

Pavlovic, M., 2015. Bioengineering. A Conceptual Approach.

Li, L., Yu, H., Liu, D. & You, T., 2013. A novel dark-field microscopy technique coupled with capillary electrophoresis for visual analysis of single nanoparticles. Analyst, Vol. 138, No. 13, Hal. 3705-3710.

Yang, C., Dabros, T., Li, D., Czarnecki, J. & Masliyah, J.H., 2001. Measurement of the zeta potential of gas bubbles in aqueous solutions by microelectrophoresis method. Journal of Colloid and Interface Science, Vol. 243, No. 1, Hal. 128-135.

Bangham, A.D., Heard, D.H., Flemans, R. & Seaman, G.V.F., 1958. An apparatus for microelectrophoresis of small particles. Nature, Vol. 182, No. 4636, Hal. 642-644.

Barisik, M., Atalay, S., Beskok, A. & Qian, S., 2014. Size dependent surface charge properties of silica nanoparticles. The Journal of Physical Chemistry C, Vol. 118, No. 4, Hal. 1836-1842.

Refbacks

  • There are currently no refbacks.