Analisis Kualitas Data EEG pada Penderita Mild Alzheimer’s Disease Menggunakan Metode ICA (Independent Component Analysis)

Hilman Asyrafi, Nita Handayani

Abstract

Alzheimer merupakan salah satu jenis penyakit demensia yang ditandai dengan penurunan fungsi otak secara perlahan mulai dari ingatan sampai pada fungsi fisik. Diagnosis penyakit Alzheimer dapat dilakukan melalui analisis sinyal otak hasil rekaman EEG (Electroencephalogram). Namum, masalah utama yang dihadapi dalam memahami sinyal EEG adalah sinyal yang terukur merupakan sinyal campuran antara sinyal otak dan artifact. Artifact sangat tidak diinginkan dalam perekaman EEG sebab dapat meniru dan mengaburkan gelombang asli sinyal otak. Oleh karena itu tujuan dari penelitian ini adalah menerapkan metode ICA pada pre-processing data untuk menghilangkan artifact hasil rekaman EEG, dan menganalisis data EEG hasil pre-processing secara kualitatif dan kuantitatif. Selanjutnya dilakukan analisis spektrum menggunakan metode Periodogram Welch untuk mengetahui perbedaan spektral daya antara subjek normal dan Mild Alzheimer’s Disease (MAD). Berdasarkan hasil analisis kualitatif dan kuantitatif, diperoleh bahwa sinyal EEG memiliki kualitas yang lebih baik jika pada pre-processing data diterapkan metode ICA. Adapun hasil analisis spektrum setelah diterapkan metode ICA menunjukkan adanya pergeseran spektral daya yang lebih jelas. Pada subjek normal peningkatan spektral daya dominan pada frekuensi gelombang alpha (8-13 Hz), sementara pada subjek MAD peningkatan spektral daya terjadi pada frekuensi gelombang delta (0-4 Hz). Hal ini mengindikasikan bahwa terdapat perbedaan spektral daya antara subjek normal dengan penderita MAD berdasarkan sinyal yang terukur pada lobus frontal.

Keywords

EEG; ICA; MAD; spektral daya

Full Text:

PDF

References

1 Petrella, J. R., Coleman, R. E., & Doraiswamy, P. M. 2003. Neuroimaging and early diagnosis of Alzheimer disease: a look to the future. Radiology, 226(2), 315–336.

2 Chen, K.H., Reese, E.A., Kim, H.W., Rapoport, S.I., & Rao, J.S. 2011. Disturbed neurotransmitter transporter expression in alzheimer disease brain. Journal of Alzheimer’s Disease: JAD, 26(4), 755–766.

3 Prince, M., Wimo, A., Guerchet, M., Ali, G., Wu, Y., & Prina, M. 2015. World Alzheimer Report 2015 The Global Impact Of Dementia. Alzheimer’s Disease International (ADI). London.

4 Houmani, N., Vialatte, F., Gallego-Jutglà, E., Dreyfus, G., Nguyen-Michel, V. H., Mariani, J., & Kinugawa, K. 2018. Diagnosis of Alzheimer's disease with Electroencephalography in a differential framework. PloS one, 13(3), e0193607.

5 Helzner E.P., Scarmeas N., Cosentino S., Tang M. X., Schupf N., Stern Y. 2008. Survival in Alzheimer disease: a multiethnic, population-based study of incident cases. Neurology, 71(19), 1489–95.

6 Cummings, J., Aisen, P. S., DuBois, B., Frölich, L., Jack, C. R., Jr, Jones, R. W., Morris, J. C., Raskin, J., Dowsett, S. A., & Scheltens, P. 2016. Drug development in Alzheimer's disease: the path to 2025. Alzheimer's research & therapy, 8, 39.

7 Melissant, C., Ypma, A., Frietman, E., & Cornelis, S.J. 2005. A method for detection of Alzheimer’s disease using ICA-enhanced EEG measurement. Artificial Intelligence in Medicine, 33 (3), 209-222.

8 Handayani, N. 2018. Karakterisasi Citra Brain ECVT dan Sinyal EEG Pada Penderita Mild Alzheimer’s Disease untuk Deteksi Dini Alzheimer. Disertasi, Institut Teknologi Bandung.

9 Fox, M.D., & Raichle, M.E. 2007. Spontaneous fluctuations in brain activity observed with functional magnetic resonance imaging. Nat. Rev. Neurosci, 8, 700–711.

10 Parlindungan, R. 2008. Analisis Waktu-Frekuensi (TFA) Gelombang EEG Naracoba Pada Stimulasi Akupuntur GI. Tesis, Institut Teknologi Bandung.

11 Jutten, C., & Taleb, A. 2000. Source separation: From dusk till dawn. In Proceedings of the International Workshop on Independent Component Analysis and Blind Signal Separation-ICA2000, Helsinki, Finland, 19–22 June; 15–26.

12 Makeig, S., Jung, T. P., Bell, A.J., Ghahremani, D., Sejnowski, T. J. 1997. Blind separation of auditory event-related brain responses into independent components. Proc. Natl. Acad. Sci. USA, 94, 10979–10984.

13 Vigario, R., Sarela, J., Jousmaki, V., Hamalainen, M., Oja, E. 2000. Independent component approach to the analysis of EEG and MEG recordings. IEEE Trans. Biomed. Eng. 47, 589–593.

14 Vigario, R. N. 1997. Extraction of ocular artefacts from EEG using independent component analysis. Electroencephalogr. Clin. Neurophysiol, 103, 395–404.

15 Celone, K. A., Calhoun, V. D., Dickerson, B. C., Atri, A., Chua, E. F., Miller, S. L., DePeau, K., Rentz, D. M., Selkoe, D. J., Blacker, D., Albert, M. S., & Sperling, R. A. 2006. Alterations in memory networks in mild cognitive impairment and Alzheimer's disease: an independent component analysis. The Journal of neuroscience: the official journal of the Society for Neuroscience, 26(40), 10222–10231.

16 Jeong, J.S. 2004. EEG dynamics in patients with Alzheimer’s disease. Clin. Neurophysiol, 115, 1490–1505.

17 Cichocki, A., Shishkin, S. L., Musha, T., Leonowicz, Z., Asada, T., Kurachi, T. 2005. EEG filtering based on blind source separation (BSS) for early detection of Alzheimer’s disease. Clin. Neurophysiol, 116, 729–737.

18 Vialatte, F.-B., Solé-Casals, J., Maurice, M., Latchoumane, C., Hudson, N., Wimalaratna, S., Jeong, J., Cichocki, A. 2008. Improving the quality of EEG data in patients with Alzheimer’s disease using ICA. In Proceedings of the International Conference on Neural Information Processing, Cambridge, MA, USA, 25–28 November; 979–986.

19 Hyvärinen, A., Karhunen, J., & Oja, E. 2001. Independent Component Analysis. John Wiley & Sons, New York.

20 Jung, T., Makeig, S & McKeown, M. 2001. Imaging Brain Dynamics Using Independent Component Analysis. Proceedings of the IEEE, 89, 1107-1122.

21 Zweifel, N. 2016. Changes in the EEG Spectrum of a Child with Severe Disabilities in Response to Power Mobility Training. Tesis, United States. Grand Valley State University.

22 Mozaffar, S., & Petr, D. W. K. 2002. Artifact Extraction from EEG Data Using Independent Component Analysis. The University of Kansas Center, Kansas.

23 Schalk, G., & Mellinger, J. 2010. A Practical Guide to Brain-Computer Interfacing with BCI2000. Springer-Verlag, London.

24 Haq, A. D., Santoso, I., & Macrina, A. A. 2012. Estimasi Signal to Noise Ratio (SNR) Menggunakan Metode Korelasi. Transient. Jurnal Ilmiah Teknik Elektro, 1, 326-332.

25 Louis, E. K., & Frey, L. C. 2016. An Introductory Text and Atlas of Normal and Abnormal Findings in Adults, Children, and Infants, American Epilepsy Society, Chicago.

26 Adeli, H., & Ghosh-Dastidar, S. 2010. Automated EEG-Based Diagnosis of Neurological Disorders: Inventing the Future of Neurology. 1st Edition. CRC Press, United States.

27 Meghdadi, A. H., Stevanović Karić, M., McConnell, M., Rupp, G., Richard, C., Hamilton, J., Salat, D., & Berka, C. 2021. Resting state EEG biomarkers of cognitive decline associated with Alzheimer's disease and mild cognitive impairment. PloS one, 16(2), e0244180.

28 Yang, W., Pilozzi, A., Huang, X. 2021. An Overview of ICA/BSS-Based Application to Alzheimer’s Brain Signal Processing. Biomedicines, 9, 386.

Refbacks

  • There are currently no refbacks.