Analisis Tingkat Kegempaan Wilayah Jawa Timur berbasis Distribusi Spasial dan Temporal Magnitude Of Completeness (Mc), A-Value Dan B-Value

Uswatun Chasanah, Eko Handoyo

Abstract

The Space and temporal distribution of the seismicity parameters consisting of magnitude of completeness (Mc), a-value, and b-value were estimated for the East Java, Indonesia using the International Seismological Center (ISC) earthquake catalogue. The main purposes of this research were to determine the parameters of the seismicity and its spatial temporal distribution so that early detection and warning systems in the East Java run optimally. All estimated parameters were analyzed based on an earthquake catalogue during 1980-2020 by applying The Maximum Curvature (MaxC) method. The MaxC method enumerate the highest value of the first subordinate of the cumulative Frequency Magnitude Distribution (FMD) graph. The value of the magnitude of completeness, which was estimated on this study as result Mc 3,4 – 4,8; a-value 5,560 - 8,244; and b-value (0,73 – 0,82 ± 0.13). The lower b-value (0,73 ± 0.13) was obtained for the southern part of the East Java. This area is indicated to have high seismic moment release and rock stress level accumulation. Understanding and clarifying the relation between seismicity parameters and structure of tectonic framework can guidance us to estimate seismic risk for earthquake hazard mitigation in the East Java.

Keywords

seismicity; magnitude of completeness; East Java.

Full Text:

PDF

References

1 McCaffrey, R. 2009. The Tectonic Framework of the Sumatran Subduction Zone Annu. Rev. Earth Planet. Sci., 37(1), 345–366. doi: 10.1146/annurev.earth.031208.100212.

2 Gui, Z., Bai, Y., Wang, Z. and Li, T. 2019. Seismic b-value anomalies in the Sumatran region : Seismotectonic implications. J. Asian Earth Sci.,173, no. January, 29–41. doi: 10.1016/j.jseaes.2019.01.015.

3 Prawirodirdjo L and Bock, Y. 2004. Instantaneous global plate motion model from 12 years of continuous GPS observations. J. Geophys. Res. Solid Earth, 109 (8), 1–15 doi: 10.1029/2003JB002944.

4 Madlazim, M. 2013. Kajian Awal Tentang B Value Gempa Bumi Di Sumatra. J. Penelit. Fis. dan Apl., 3 (1), 41. doi: 10.26740/jpfa.v3n1.p41-46.

5 Shohaya, J.N., Chasanah, U., Mutiarani, A., Wahyuni, L.P., and Madlazim, M. 2013. Survey Dan Analisis Seismisitas Wilayah Jawa Timur Berdasarkan Data Gempa Bumi Periode 1999-2013 Sebagai Upaya Mitigasi Bencana Gempa Bumi. J. Penelit. Fis. dan Apl., 3 (2), 18. doi: 10.26740/jpfa.v3n2.p18-27.

6 Gunawan, E., and Widiyantoro, S. 2019. Active tectonic deformation in Java, Indonesia inferred from a GPS-derived strain rate. J. Geodyn., 123, 49–54. doi: 10.1016/j.jog.2019.01.004.

7 Bilek, S.L., and Engdahl, E.R. 2007. Rupture characterization and aftershock relocations for the 1994 and 2006 tsunami earthquakes in the Java subduction zone. Geophys. Res. Lett., 34 (20), 1–5. doi: 10.1029/2007GL031357.

8 Koulali, A., Mcclusky, S., Cummins, P., and Tregoning, P. 2018. Wedge geometry, frictional properties and interseismic coupling of the Java megathrust Tectonophysics. doi: 10.1016/j.tecto.2018.03.012.

9 Huang, H., Meng, L., Bürgmann, R., Wang, W., and Wang, K. 2020. Spatio-temporal foreshock evolution of the 2019 M 6.4 and M 7.1 Ridgecrest, California earthquakes. Earth Planet. Sci. Lett., 551, 116582. doi: 10.1016/j.epsl.2020.116582.

10 Wyss, W., Wiemer, S., and Zúñiga, R. 2001. Zmap A Tool For Analyses Of Seismicity Patterns Typical Applications And Uses : A Cookbook Table of Content. Writing, 6401.

11 Pramono, S., Prakoso, W.A., Rohadi, S., Karnawati, D., Santoso, E., and Nurfajar, A. 2020. Influence of seismicity declustering on ground motion prediction equations for central sulawesi seismic region. Int. J. GEOMATE, 19, (71), 61–68. doi: 10.21660/2020.71.28369.

12 Baranov, S.V., Shebalin, P.N., and Gabsatarova, I.P. 2019. Relationship between preceding seismicity and the probability of strong aftershock occurrence. Geophys. Res., 20 (3), 5–19. doi: 10.21455/gr2019.3-1.

13 Leptokaropoulos, K.M., Karakostas, V.G., Papadimitriou, E.E., Adamaki, A.K., Tan, O., and Inan, S. 2013. A homogeneous earthquake catalog for western Turkey and magnitude of completeness determination. Bull. Seismol. Soc. Am., 103 (5), 2739–2751, doi: 10.1785/0120120174.

14 H. E. A. Hafiez, H.E.A. and Toni, M. 2020. Magnitude of completeness for the Northern stations of the Egyptian National Seismological Network. Arab. J. Geosci., 13(12), 1–9. doi: 10.1007/s12517-020-05461-0.

15 Radziminovich, N.A, Miroshnichenko, A.I. and Zuev, F.L. 2019. Magnitude of completeness, b-value, and spatial correlation dimension of earthquakes in the South Baikal Basin, Baikal Rift System. Tectonophysics, 759, no. April, 44–57. doi: 10.1016/j.tecto.2019.04.002.

16 Woessner, J. and Wiemer, S. 2005. Assessing the quality of earthquake catalogues: Estimating the magnitude of completeness and its uncertainty. Bull. Seismol. Soc. Am., 95 (2), 684–698. doi: 10.1785/0120040007.

17 H. E. A. Hafiez, H.E.A. 2015. Estimating the magnitude of completeness for assessing the quality of earthquake catalogue of the ENSN, Egypt. Arab. J. Geosci., 8 (11), 9315–9323. doi: 10.1007/s12517-015-1929-x.

Refbacks

  • There are currently no refbacks.