Pengaruh Deklinasi Matahari terhadap parameter cuaca wilayah malang dan sekitarnya

Achmad Sasmito, Alfan Sukmana Praja, Linda Fitrotul Muzayanah, Rahayu Sapta sri Sudewi

Abstract

Cold temperatures occur in the Dieng and Lumajang highlands from the end of July to August 2020. At almost the same time, hot temperatures also occur in the United States, Japan, and Spain. This study discusses the effect of declination of the sun on weather parameters in Malang and its surroundings. Besides, it also discusses a physical and dynamic review of the occurrence of hot air temperatures in the northern hemisphere (BBU) with cold temperatures in the southern hemisphere (BBS). The data used are numerical data of solar radiation of the atmosphere and observation data from AWS which includes elements of global radiation, temperature, and surface air humidity. Data samples were taken from Malang Climatology Station and Karang Kates Geophysical Station which represent BBS and weather information from BBU. Estimation of cold temperatures in Ranu Pani, Lumajang was carried out using the lapse rate model. Cold temperatures that occur in the East Java region are influenced by the declination of the Sun, solar radiation, the transmissivity coefficient, and the temperature advection process from Australia. When the sun is in the north, there are cold temperatures in the southern part of the earth and vice versa. The occurrence of hot or cold temperatures in each region is also influenced by the composition of gases in the atmosphere, geography, topography, and the influence of advection due to the influence of the surrounding air.

Keywords

cold temperature; declination of the sun; solar radiation; lapse rate model; advection

Full Text:

PDF

References

  1. Kautsar, M. 2019. Suhu Dieng Minus 9 Derajat Celcius, Banyak Mobil Mogok. Diakses pada 1 September 2020. Dari https://www.dream.co.id/news/suhu-dieng-anjlok-hingga-minus-9-derajat-190625i.html
  2. Zain, F.M., 2020. Dataran Tinggi Dieng Diselimuti Embun Es, Suhu Udara di Bawah Nol Derajat Celsius. Diakses pada 31 Agustus 2020. Dari https://regional.kompas.com/read/2020/07/27/09422331/dataran-tinggi-dieng-diselimuti-embun-es-suhu-udara-di-bawah-nol-derajat
  3. Intan, Putu. 2020. Viral di Medsos, Embun Es Muncul di Semeru. Diakses pada 1 September 2020. Dari https://travel.detik.com/travel-news/d-5118085/viral-di-medsos-embun-es-muncul-di-semeru
  4. Sarafil, J. 2020.Spanyol dan Inggris ‘diserang’ Gelombang Panas. Diakses pada 29Agustus 2020. Dari https://gempita.co/spanyol-dan-inggris-diserang-gelombang-panas/
  5. -----------. 2020. Suhu Udara di Jepang Mencapai 41,1 Derajat Celcius. Diakses 1 September 2020. Dari https://japanesestation.com/news/buzz-from-japan/suhu-udara-di-jepang-mencapai-411-derajat-celcius
  6. -----------. 2020. NASA's ECOSTRESS Monitors California's Record-Breaking Heat Wave. Diakses pada 30 Agustus 2020. Dari https://www.jpl.nasa.gov/news/nasas-ecostress-monitors-californias-record-breaking-heat-wave
  7. Wirawan, U.2020. Death Valley California Capai Suhu 54,4 Derajat Celcius. Diakses pada 29 Agustus 2020. Dari https://www.beritasatu.com/dunia/667107/death-valley-california-capai-suhu-544-derajat-celcius
  8. Matsuda, Y., Fujita, K., Ageta, Y., & Sakai, A. 2006. Estimation of atmospheric transmissivity of solar radiation from precipitation in the Himalaya and the Tibetan Plateau. Annals of Glaciology, 43, 344-350.
  9. Khatib, T., & Elmenreich, W. 2015. A model for hourly solar radiation data generation from daily solar radiation data using a generalized regression artificial neural network. International journal of Photoenergy, 2015.
  10. Mousavi Maleki, S. A., Hizam, H., & Gomes, C. 2017. Estimation of hourly, daily and monthly global solar radiation on inclined surfaces: Models re-visited. Energies, 10(1), 134.
  11. Weiskerger, C. J., Rowe, M. D., Stow, C. A., Stuart, D., & Johengen, T. 2018. Application of the Beer–Lambert model to attenuation of photosynthetically active radiation in a shallow, eutrophic lake. Water Resources Research, 54(11), 8952-8962.
  12. Pizarro, Rodrigo H.,1967. Estimation of Incoming Radiation From Extraterrestrial Radiation and Climatic Data, All Graduate Theses and Dissertations. 1607.
  13. Baigorria, G. A., Villegas, E. B., Trebejo, I., Carlos, J. F., & Quiroz, R. 2004. Atmospheric transmissivity: distribution and empirical estimation around the central Andes. International Journal of Climatology: A Journal of the Royal Meteorological Society, 24(9), 1121-1136.
  14. Seidel, D. J., Ao, C. O., & Li, K. 2010. Estimating climatological planetary boundary layer heights from radiosonde observations: Comparison of methods and uncertainty analysis. Journal of Geophysical Research: Atmospheres, 115(D16).
  15. Minder, J. R., Mote, P. W., & Lundquist, J. D. 2010. Surface temperature lapse rates over complex terrain: Lessons from the Cascade Mountains. Journal of Geophysical Research: Atmospheres, 115(D14).
  16. Thayyen, R. J., & Dimri, A. P. 2018. Slope environmental lapse rate (SELR) of temperature in the monsoon regime of the western Himalaya. Frontiers in Environmental Science, 6, 42.
  17. Córdova, M., Célleri, R., Shellito, C. J., Orellana-Alvear, J., Abril, A., & Carrillo-Rojas, G. 2016. Near-surface air temperature lapse rate over complex terrain in the Southern Ecuadorian Andes: implications for temperature mapping. Arctic, Antarctic, and Alpine Research, 48(4), 673-684.
  18. Romps, D. M. 2017. Exact expression for the lifting condensation level. Journal of the Atmospheric Sciences, 74(12), 3891-3900.
  19. Daidzic, N. E. 2019. A new model for lifting condensation levels estimation. International Journal of Aviation, Aeronautics, and Aerospace, 6(5), 1.

Refbacks

  • There are currently no refbacks.