The Modified Glas-Mosel Formula for Numerical Investigation of the Fusion Cross-Sections of (O-16)+(Ge-70,72,73,74,76) - A Preliminary Study

Yacobus Yulianto, Zaki Su'ud


Many intense experimental and theoretical studies have been performed to understand the behavior of fusion reactions, especially related to the barrier height of the interacting nuclei. This preliminary study would discuss a variation of the applicability of the Glas-Mosel formula with a little bit of modification applied to heavy systems. The modified Glas-Mosel formula has been utilized to calculate the fusion cross-sections of (O-16)+(Ge-70,72,73,74,76). To perform the differential and the optimization numerics, the Finite Difference and Nelder-Mead methods were applied to Fortran script-code respectively to assist the computational process. Referring to the obtained results, it can be indicated that the obtained results are in positive agreement with the experimental data. In addition, the modified Glas-Mosel formula proposed in this study has the capability to explain the experimental results or in predicting the fusion cross-section of nuclei. Further investigations are needed to get the crucial data to serve as a basic reference.


Glas-Mosel; fusion; cross-section; germanium

Full Text:



  1. Fang, X., Bucher, B., Almaraz-Calderon, S., Alongi, A., Ayangeakaa, A. D., Best, A., Berg, G. P. A., Cahillane, C., Dahlstrom, E., Deboer, R. J., Freer, M., Fujita, H., Fujita, Y., Görres, J., Hatanaka, K., Howard, A., Itoh, T., Kadoya, T., Kawabata, T., Yokota, N. 2013. Experimental investigation of the 12C+12C fusion at very low energies by direct and indirect methods. J. Phys.: Conf. Ser., 420, 012151.
  2. Stefanini, A. M., Montagnoli, G., Corradi, L., Courtin, S., Fioretto, E., Grebosz, J., Haas, F., Jia, H. M., Mazzocco, M., Michelagnoli, C., Mijatović, T., Montanari, D., Parascandolo, C., Scarlassara, F., Strano, E., Szilner, S., Torresi, D., and Ur, C. A. 2014. Fusion of 28Si+28Si: Oscillations above the barrier and the behavior down to 1 b. EPJ Web Conf., 66, 03082.
  3. Duarte, J. G., Gasques, L. R., Oliveira, J. R. B., Zagatto, V. A. B., Chamon, L. C., Medina, N. H., Added, N., Seale, W. A., Alcántara-Núñez, J. A., Rossi, E. S., Amador-Valenzuela, P., Lépine-Szily, A., Freitas, A. S., Scarduelli, V., Aguiar, V. A. P., dan Shorto, J. M. B. 2015. Measurement of fusion cross sections for 16O+16O. J. Phys. G: Nucl. Part. Phys., 42, 065102.
  4. Zhang, N. T., Tang, X. D., Chen, H., Chesneanu, D., Straticiuc, M., Trache, L., Burducea, I., Li, K. A., Li, Y. J., Ghita, D. G., Margineanu, R., Pantelica, A., dan Gomoiu, C. 2016. Fusion cross section of 12C+13C at sub-barrier energies. EPJ Web Conf., 109, 09003.
  5. Rajbongshi, T., Kalita, K., Nath, S., Gehlot, J., Banerjee, T., Mukul, I., Dubey, R., Madhavan, N., Lin, C. J., Shamlath, A., Laveen, P. V., Shareef, M., Kumar, N., Jisha, P., and Sharma, P. 2016. Deformation effects on sub-barrier fusion cross sections in 16O+174,176Yb. Phys. Rev. C, 93, 054622.
  6. Parkar, V. V., Sharma, S. K., Palit, R., Upadhyaya, S., Shrivastava, A., Pandit, S. K., Mahata, K., Jha, V., Santra, S., Ramachandran, K., Nag, T. N., Rath, P. K., Kanagalekar, B., and Trivedi, T. 2018. Investigation of complete and incomplete fusion in the 7Li+124Sn reaction near Coulomb barrier energies. Phys. Rev. C, 97, 014607.
  7. Notani, M., Esbensen, H., Fang, X., Bucher, B., Davies, P., Jiang, C. L., Lamm, L., Lin, C. J., Ma, C., Martin, E., Rehm, K. E., Tan, W. P., Thomas, S., Tang, X. D., and Brown, E. 2012. Correlation between the 12C+12C, 12C+13C, and 13C+13C fusion cross sections. Phys. Rev. C, 85, 014607.
  8. Pakou, A., Stiliaris, E., Pierroutsakou, D., Alamanos, N., Boiano, A., Boiano, C., Filipescu, D., Glodariu, T., Grebosz, J., Guglielmetti, A., La Commara, M., Mazzocco, M., Parascandolo, C., Rusek, K., Sánchez-Benítez, A. M., Signorini, C., Sgouros, O., Soramel, F., Soukeras, V., and Zerva, K. 2013. Fusion cross sections of 8B+28Si at near-barrier energies. Phys. Rev. C, 87, 014619.
  9. Patel, D., Santra, S., Mukherjee, S., Nayak, B. K., Rath, P. K., Parkar, V. V., and Choudhury, R. K. 2013. Elastic scattering and fusion cross-sections in 7Li+27Al reaction. Pramana - J. Phys., 81, 587–602.
  10. Montagnoli, G., Stefanini, A. M., Esbensen, H., Jiang, C. L., Corradi, L., Courtin, S., Fioretto, E., Grebosz, J., Haas, F., Jia, H. M., Mazzocco, M., Michelagnoli, C., Mijatović, T., Montanari, D., Parascandolo, C., Scarlassara, F., Strano, E., Szilner, S., and Torresi, D. 2014. Fusion of 28Si+28,30Si: Different trends at sub-barrier energies. Phys. Rev. C, 90, 044608.
  11. Vadagama, C. M., Vashi, V. R., and Desai, P. R. 2017. Fusion cross-sections for 40,48Ca+48Ca reactions using Classical Molecular Dynamics Model. The DAE Symp. on Nucl. Phys., 62, 488–489.
  12. Simenel, C., Keser, R., Umar, A. S., and Oberacker, V. E.. 2013. Microscopic study of 16O+16O fusion. Phys. Rev. C, 88, 024617.
  13. Rana, S., Kumar, R., and Bhuyan, M. 2021. Fusion cross section of the superheavy Z=120 nuclei within the relativistic mean-field formalism. Phys. Rev. C, 104(2), 024619.
  14. deSouza, R. T. , Singh, V. Hudan, S. Lin, Z., and Horowitz, C. J. Effect of increasing neutron-excess on the fusion cross-section in 12-15C+12C at above-barrier energies. Phys. Lett. B, 814, 136115.
  15. Steinbach, T. K., Vadas, J., Schmidt, J., Haycraft, C., Hudan, S., Desouza, R. T., Baby, L. T., Kuvin, S. A., Wiedenhöver, I., Umar, A. S., and Oberacker, V. E. 2014. Sub-barrier enhancement of fusion as compared to a microscopic method in 18O+12C O. Phys. Rev. C, 90, 041603.
  16. Glas, D., and Mosel, U. 1975. On the critical distance in fusion reactions. Nucl. Phys. A, 237, 429–440.
  17. Aguilera, E. F., Kolata, J. J., and Tighe, R. J. Nuclear structure effects in the sub-barrier fusion of 16O+70,72,73,74,76Ge. Phys. Rev. C, 52(6), 3103–3113.
  18. Tserruya, I., Eisen, Y., Pelte, D., Gavron, A., Oeschler, H., Berndt, D., and Harney, H.L. 1978. Total fusion cross section for the 16O+16O system. Phys. Rev. C, 18(4), 1688–1699.
  19. Yulianto, Y., and Su’ud, Z. 2018. Numerical Analysis of Fusion Cross Section of 16O+16O by Using The Modified Glas-Mosel Formula. Indones. J. Appl. Phys., 8(2), 81–87.
  20. Jia, H. M., Lin, C. J., Yang, F., Xu, X. X., Zhang, H. Q., Liu, Z. H., Yang, L., Zhang, S. T., Bao, P. F., and Sun, L. J. 2012. Fusion of the 16O+76Ge and 18O+74Ge systems and the role of positive Q-value neutron transfers. Phys. Rev. C, 86, 044621.
  21. Vijay, Chahal, R. P., Gautam, M. S., Duhan, S., and Khatri, H. 2021. Fusion cross sections and barrier distributions for 16O+70,72,73,74,76Ge and 18O+74Ge reactions at energies near and below the Coulomb barrier. Phys. Rev. C, 103, 024607.
  22. Wong, C.Y. 1973. Interaction Barrier in Charged-Particle Nuclear Reactions. Phys. Rev. Lett., 31(12), 766–769.
  23. Akyuz, R.O., and Winter, A. 1979. Nuclear structure and heavy-ion reactions. Proc. Enrico Fermi Int. School of Physics,Amsterdam, 491.
  24. Lwin, N. W., Htike, N. N., and Hagino, K. 2017. Applicability of the Wong formula for fusion cross sections from light to heavy systems. Phys. Rev. C, 95, 064601.
  25. Hagino, K., and Takigawa, N. 2012. Subbarrier Fusion Reactions and Many-Particle Quantum Tunneling. Prog. Theor. Phys, 128(6), 1061–1106.
  26. Gao, J., Zhang, H., Bao, X., Li, J., and Zhang, H. 2014. Fusion calculations for 40Ca+40Ca, 48Ca+48Ca, 40Ca+48Ca, and p+208Pb systems. Nucl. Phys. A, 929, 9–19.
  27. Chapra, S.C. 2012. Applied numerical methods with MATLAB for engineers and scientists − 3rd ed. McGraw-Hill Companies, New York.
  28. Mathews, J., and Fink, K. 1999. Numerical Methods Using Matlab − 3rd Edition. Prentice Hall, New Jersey.
  29. Yulianto, Y., Ramdani, R., Abidin, M.S., and Su’ud, Z. 2017. Perhitungan Energi Ground State Atom Berilium dengan Menggunakan Metode Variasional. Pros. SKF. ITB. Bandung.
  30. Yulianto, Y., and Su’ud, Z. 2018. Optimization of Trial Wave Function in Determining the Ground State Energy of Helium Atom. Jurnal Fisika, 8 (1), 38–43.
  31. Yulianto, Y., and Su’ud, Z. 2016. Investigation of nuclear ground state properties of fuel materials of 232Th and 238U using Skyrme-Extended-Thomas-Fermi approach method. J. Phys.: Conf. Ser., 739, 012142.
  32. Nelder, J.A., and Mead, R., 1965. A simplex method for function minimization. Computer Journal, 7, 308–313.
  33. Koonin, S.E., and Meredith, D.C. 1990. Computational Physics − Fortran Version. Westview Press, USA.
  34. Al-Ghamdi, A.H., and Ibraheem, A.A. 2016. Analysis of 6Li scattering at 240 MeV using different nuclear potentials. Braz. J. Phys., 46, 334–340.


  • There are currently no refbacks.