A Study of Anti-Radiation Weaving Fabric with Plasma Corona Treatment

Valentinus Galih Vidia Putra, Irwan Irwan, Ichsan Purnama, Juliany Ningsih Mohamad, Yusril Yusuf


In this research, Carbon black particles were applied on the woven fabric by the knife coating technique and pretreatment using plasma corona discharge to build-up conductive cotton-polyester (CVC 50%) fabric electromagnetic shielding material. This paper describes the making of anti-radiation weaving fabric using plasma technology. The anti-radiation patch was developed by first modifying the textile fabric's surface using atmospheric pressure plasma technology using tip-cylinder electrode configuration. The plasma corona discharge was generated using high voltage electricity with asymmetrical electrodes (tip and cylinder). The treated weaving fabric using plasma was then coated with carbon black ink. This research indicates that an anti-radiation weaving fabric was successfully shielded electromagnetic radiation from an electronic device.


Anti-radiation; corona Discharge Plasma; weaving fabric; tip-cylinder electrode

Full Text:



Shishoo. 2007. Plasma Technology For Textile. Woodhead Publishing, Cambridge.

Cheng, L., Zhang, T., Guo, M., Li, J., Wang, S., & Tang, H. 2015. Electromagnetic shielding effectiveness and mathematical model of stainless steel composite fabric. The Journal of The Textile Institute, Vol. 106, No. 6, pp. 577-586.

Hwang, P. W., Chen. A. P., Lou, C. W., & Lin, J. H. 2014. Electromagnetic shielding effectiveness and functions of stainless steel/bamboo charcoal conductive fabrics. Journal of Industrial Textiles, Vol. 44, No.3, pp. 477-494.

Balodis, V., Brūmelis, G., Kalviškis, K., Nikodemus, O., Tjarve, D., & Znotiņa, V. 1896. Does the Skrunda Radio Location Station diminish the radial growth of pine trees? Science of the Total Environment, Vol. 180, No. 1, pp. 57-64.

Sjaifudin., Widodo, M., Muhlisin, Z., & Nur, M. 2014. Modifikasi Permukaan Bahan Tekstil Dengan Plasma Lucutan Korona, Prosiding Seminar Nasional Tekstil, Hal. 1-22.

Rauscher., Perucca., & Buyle. 2010. Plasma Technology For Hyperfunctionals Surfaces, Wiley-VCH, Weinheim.

Lawrence, C. A. 2003, Fundamentals of Spun Yarn Technology, CRC Press, New York.

Gherardini, L., Ciuti, G., Tognarelli, S., Cinti. C. 2014. Searching for the perfect wave: the effect of radiofrequency electromagnetic fields on cells, International Journal of Molecular Sciences, Vol. 15, No. 4, pp. 5366-5387.

Putra, V.G.V., Maruto, G., & Rosyid, M.F. 2017. New theoretical modeling for predicting yarn angle on OE yarn influenced by fibre movement on torus coordinate based on classical mechanics approach. Indian Journal of Fibre and Textile Research, Vol. 42. pp. 359-363.

Lieberman, M., & Lichtenberg, A. 1994. Principles of Plasma Discharges and Materials Processing, New York: John Wiley and Sons.

Boonchoat Paosawatyanyong, & Satreerat Hodak. 2010. Hydrophobic and Hydrophilic Surface Nano-Modification of PET Fabric by Plasma Process. Journal of Nanoscience and Nanotechnology, Vol. 10, pp. 7050–7054.

Safarova, V., Tunak, M., Truhlar, M., Militky, J. 2016. A new method and apparatus for evaluating the electromagnetic shielding effectiveness of textiles. Text. Res. J., Vol. 86, pp. 44–56

Chen, H.C., Lee, K.C., Lin, J.H., & Koch, M. 2007. Comparison of electromagnetic shielding effectiveness properties of diverse conductive textiles via various measurement techniques. J. Mater. Process. Techol, Vol. 192, pp. 549–554.

Safarova, V., & Militky, J. 2012. Comparison of methods for evaluating the electromagnetic shielding of textiles. Fibers Text, Vol. 19, pp. 50–55.

Avloni, J., Lau, R., Ouyang, M., Florio, L., Henn, A.R., & Sparavigna, A. 2007. Shielding Effectiveness Evaluation of Metallized and Polypyrrole-Coated Fabrics. J. Thermoplast. Comp. Mater, Vol. 20, pp. 241–254.

Ozen, M.S., Usta, I., Yuksek, M., Sancak, E., Soin, N. 2018. Investigation of the Electromagnetic Shielding Effectiveness of Needle Punched Nonwoven Fabrics Produced from Stainless Steel and Carbon Fibres. Fibers Text. East. Eur, Vol. 26, pp. 94–100.

MarComm, M. 2018. MILLENIALS. Jakarta: Fantasious x Loveable.

Stillman, D. S. 2018. Generasi Z: Memahami Karakter Generasi Baru yang Akan Mengubah Dunia Kerja. Jakarta: PT Gramedia Pustaka Utama.

Putra, V. G., & Wijayono, A. 2019. Suatu Studi Awal Modifikasi Sifat Pembasahan Pada Permukaan KainTekstil Poliester 100% Menggunakan Teknologi Plasma Pijar Korona. Prosiding Seminar Nasional Fisika (E-Journal), Hal. 15-20.

Putra, V. G., Mohamad, J. N., & Yusuf, Y. 2020. Study Of Surface Tension Properties Looked On Contact Angle Value On 100% Nylon Textile Fabric Using Corona Discharge Plasma Technology. Wahana Fisika, pp. 10-17.

Putra, V. G., Mohamad, J., & Wijayono, A. 2020. Efek Modifikasi Plasma Untuk Meningkatkan Sifat Tahan Api Dari Kain Katun. Jurnal Dinamika Penelitian Industri, Vol. 31, No. 1, Hal. 59-70.

Putra, V., Fitri, A., Purnama, I., & Mohamad, J. 2020. Prototipe Pakaian Anti Radiasi Unisex Sportswear. Jurnal Kumparan Fisika, Hal. 19-24.

Putra, V., Mohamad, J., & Yusuf, Y. 2020. Penerapan Gelombang Plasma dalam Mengurangi Kadar Chemical Oxyegen Demand. Jurnal Ilmu Fisika, Hal. 60-69.

Murti, W., & Putra, V. G. 2020. Studi Pengaruh Perlakuan Plasma TerhadapSifat Material AntiBakteri Kain Kassa Menggunakan Minyak Atsiri (Zingiber Officinale Rosc). Jurnal Teori dan Aplikasi Fisika, Hal. 69-76.


  • There are currently no refbacks.