Prediksi Kejadian Fibrilasi Atrium Paroksismal Menggunakan Jaringan Syaraf Tiruan dan Particle Swarm Optimization dengan Fitur Interval RR

Fahmi Alhafid, Nuryani Nuryani, Darmanto Darmanto

Abstract

Fibrilasi Atrium (FA) merupakan jenis aritmia yang paling umum dengan peningkatan resiko 1,5 hingga 2 kali lipat dari semua penyebab kematian dan peningkatan morbiditas. FA Paroksismal (FAP) adalah salah satu tipe fibrilasi atrium. Studi mengenai FAP menunjukkan bahwa 20% - 30% individu dengan FA memiliki FAP. Penelitian untuk membuat model predictor tool FAP menggunakan Jaringan Syaraf Tiruan (JST) telah dilakukan. Fitur Statistik interval RR dijadikan fitur masukan pada JST Radial Basis Function (RBF) dengan optimasi menggunakan Particle Swarm Optimization (PSO). Data Elektrokardiogram (EKG) yang digunakan adalah Atrial Fibrillation Prediction Database (AFPDB) dari PyhsioNet. Dengan target keluaran JST berupa PAF dan normal. Parameter RBF yang dioptimasi dengan PSO meliputi pusat, lebar dan bobot. Hasil fitur tunggal diperoleh bahwa sistem JST PSO-RBF lebih baik jika dibandingkan dengan JST RBF dalam membuat model predictor tool FAP. Dengan variasi fitur statisitik diperoleh sistem prediksi FAP dengan akurasi, sensitivitas dan spesifitas secara berturut-turut bernilai 85,82%, 84,15% dan 87,78%.

Keywords

FA Paroksismal; RBF; PSO-RBF

Full Text:

PDF

References

Gotlibovych, I., Crawford, S., Goyal, D., Liu, J., Kerem, Y., Benaron, D., Yilmaz, D., Marcus, G., & Li, Y. 2018. End-to-end Deep Learning from Raw Sensor Data: Atrial Fibrillation Detection using Wearables. arXiv preprint arXiv. 1807.1070.

Xu, X., Wei, S., Ma, C., Luo, K., Zhang, L., & Liu, C. 2018. Atrial fibrillation beat identification using the combination of modified frequency slice wavelet transform and convolutional neural networks. Journal of Healthcare Engineering.

Outes, G.A., Suárez-Gea, M. L., & García-Pinilla, J. M. 2017. Causes of death in atrial fibrillation: Challenges and opportunities. Trends in Cardiovascular Medicine, 27(7), 494–503.

Camm, A. J., Kirchhof, P., Lip, G. Y. H., Schotten, U., Savelieva, I., Ernst, S., … ESC Committee for Practice Guidelines. 2010. Guidelines for the management of atrial fibrillation: the Task Force for the Management of Atrial Fibrillation of the European Society of Cardiology (ESC). Europace : European Pacing, Arrhythmias, and Cardiac Electrophysiology : Journal of the Working Groups on Cardiac Pacing, Arrhythmias, and Cardiac Cellular Electrophysiology of the European Society of Cardiology, 12(10), 1360–1420.

Zoni-Berisso, M., Lercari, F., Carazza, T., & Domenicucci, S. 2014. Epidemiology of atrial fibrillation: European perspective. Clinical epidemiology, 6, 213-220.

Al-Khatib, S. M., Wilkinson, W. E., Sanders, L. L., McCarthy, E. A., & Pritchett, E. L. 2000. Observations on the transition from intermittent to permanent atrial fibrillation. American heart journal, 140(1), 142-145.

Chesnokov, Y. V. 2008. Complexity and spectral analysis of the heart rate variability dynamics for distant prediction of paroxysmal atrial fibrillation with artificial intelligence methods. Artificial Intelligence in Medicine, 43(2), 151-165.

Mohebbi, M., & Ghassemian, H. 2012. Prediction of paroxysmal atrial fibrillation based on non-linear analysis and spectrum and bispectrum features of the heart rate variability signal. Computer methods and programs in biomedicine, 105(1), 40-49.

Boon, K. H., Khalil-Hani, M., Malarvili, M. B., & Sia, C. W. 2016. Paroxysmal atrial fibrillation prediction method with shorter HRV sequences. Computer methods and programs in biomedicine, 134, 187-196.

Boon, K. H., Khalil-Hani, M., & Malarvili, M. B. 2018. Paroxysmal atrial fibrillation prediction based on HRV analysis and non-dominated sorting genetic algorithm III. Computer methods and programs in biomedicine, 153, 171-184.

Narin, A., Isler, Y., Ozer, M., & Perc, M. 2018. Early prediction of paroxysmal atrial fibrillation based on short-term heart rate variability. Physica A: Statistical Mechanics and its Applications, 509, 56-65.

Uhrig, R. E. 1995. Introduction to artificial neural networks. In Proceedings of IECON'95-21st Annual Conference on IEEE Industrial Electronics, (1), 33-37.

Qasem, S. N., & Shamsuddin, S. M. H. 2009. Improving performance of radial basis function network based with particle swarm optimization. In 2009 IEEE Congress on Evolutionary Computation, 3149-3156.

Kennedy, J and Eberhart,R.C. 1995 .Particle Swarm Optimization, Proceedings of IEEE International Conference on Neural Networks, IV. Piscataway, 1942-1948.

Goldberger A.L., Amaral, L.A.N., Glass, L., Hausdorff, J.M., Ivanov, P.C.h., Mark, R.G., Mietus, J.E., Moody, G.B., Peng, C-K., Stanley, H.E. 2000. PhysioBank, PhysioToolkit, and PhysioNet: Components of a New Research Resource for Complex Physiologic Signals. Circulation, 101(23), 215-220.

Pan, J. and Tompkins, W. J. 1985. A real-time QRS detection algorithm. IEEE Trans. Biomed. Eng. BME-32: 230–36,.

Shi, Y., & Eberhart, R. 1998. A modified particle swarm optimizer. In 1998 IEEE international conference on evolutionary computation proceedings. IEEE world congress on computational intelligence (Cat. No. 98TH8360), 69-73.

Farosi, K., Nuryani, N., & Darmanto, D. 2017. Optimasi Fuzzy Inference System pada Sistem Deteksi Fibrilasi Atrium dengan Fitur Elektrokardiogram. Jurnal Fisika Dan Aplikasinya, 13(1), 10-13.

Anzihory, E., Nuryani, N., & Darmanto, D. 2016. Sistem Deteksi Fibrilasi Atrium menggunakan Fitur RR Elektokardiogram dengan Jaringan Syaraf Tiruan. Jurnal Fisika dan Aplikasinya, 12(2), 57-60.

Maftukhaturrizqoh, O., Nuryani, N., & Darmanto, D. 2019. Drowsiness detection using radial basis function network with electrocardiographic RR interval statistical feature. In Journal of Physics: Conference Series, 1153(1), 012049

Refbacks

  • There are currently no refbacks.