Prediksi Kejadian Fibrilasi Atrium Paroksismal Menggunakan Jaringan Syaraf Tiruan dan Particle Swarm Optimization dengan Fitur Interval RR
Abstract
Keywords
Full Text:
PDFReferences
Gotlibovych, I., Crawford, S., Goyal, D., Liu, J., Kerem, Y., Benaron, D., Yilmaz, D., Marcus, G., & Li, Y. 2018. End-to-end Deep Learning from Raw Sensor Data: Atrial Fibrillation Detection using Wearables. arXiv preprint arXiv. 1807.1070.
Xu, X., Wei, S., Ma, C., Luo, K., Zhang, L., & Liu, C. 2018. Atrial fibrillation beat identification using the combination of modified frequency slice wavelet transform and convolutional neural networks. Journal of Healthcare Engineering.
Outes, G.A., Suárez-Gea, M. L., & García-Pinilla, J. M. 2017. Causes of death in atrial fibrillation: Challenges and opportunities. Trends in Cardiovascular Medicine, 27(7), 494–503.
Camm, A. J., Kirchhof, P., Lip, G. Y. H., Schotten, U., Savelieva, I., Ernst, S., … ESC Committee for Practice Guidelines. 2010. Guidelines for the management of atrial fibrillation: the Task Force for the Management of Atrial Fibrillation of the European Society of Cardiology (ESC). Europace : European Pacing, Arrhythmias, and Cardiac Electrophysiology : Journal of the Working Groups on Cardiac Pacing, Arrhythmias, and Cardiac Cellular Electrophysiology of the European Society of Cardiology, 12(10), 1360–1420.
Zoni-Berisso, M., Lercari, F., Carazza, T., & Domenicucci, S. 2014. Epidemiology of atrial fibrillation: European perspective. Clinical epidemiology, 6, 213-220.
Al-Khatib, S. M., Wilkinson, W. E., Sanders, L. L., McCarthy, E. A., & Pritchett, E. L. 2000. Observations on the transition from intermittent to permanent atrial fibrillation. American heart journal, 140(1), 142-145.
Chesnokov, Y. V. 2008. Complexity and spectral analysis of the heart rate variability dynamics for distant prediction of paroxysmal atrial fibrillation with artificial intelligence methods. Artificial Intelligence in Medicine, 43(2), 151-165.
Mohebbi, M., & Ghassemian, H. 2012. Prediction of paroxysmal atrial fibrillation based on non-linear analysis and spectrum and bispectrum features of the heart rate variability signal. Computer methods and programs in biomedicine, 105(1), 40-49.
Boon, K. H., Khalil-Hani, M., Malarvili, M. B., & Sia, C. W. 2016. Paroxysmal atrial fibrillation prediction method with shorter HRV sequences. Computer methods and programs in biomedicine, 134, 187-196.
Boon, K. H., Khalil-Hani, M., & Malarvili, M. B. 2018. Paroxysmal atrial fibrillation prediction based on HRV analysis and non-dominated sorting genetic algorithm III. Computer methods and programs in biomedicine, 153, 171-184.
Narin, A., Isler, Y., Ozer, M., & Perc, M. 2018. Early prediction of paroxysmal atrial fibrillation based on short-term heart rate variability. Physica A: Statistical Mechanics and its Applications, 509, 56-65.
Uhrig, R. E. 1995. Introduction to artificial neural networks. In Proceedings of IECON'95-21st Annual Conference on IEEE Industrial Electronics, (1), 33-37.
Qasem, S. N., & Shamsuddin, S. M. H. 2009. Improving performance of radial basis function network based with particle swarm optimization. In 2009 IEEE Congress on Evolutionary Computation, 3149-3156.
Kennedy, J and Eberhart,R.C. 1995 .Particle Swarm Optimization, Proceedings of IEEE International Conference on Neural Networks, IV. Piscataway, 1942-1948.
Goldberger A.L., Amaral, L.A.N., Glass, L., Hausdorff, J.M., Ivanov, P.C.h., Mark, R.G., Mietus, J.E., Moody, G.B., Peng, C-K., Stanley, H.E. 2000. PhysioBank, PhysioToolkit, and PhysioNet: Components of a New Research Resource for Complex Physiologic Signals. Circulation, 101(23), 215-220.
Pan, J. and Tompkins, W. J. 1985. A real-time QRS detection algorithm. IEEE Trans. Biomed. Eng. BME-32: 230–36,.
Shi, Y., & Eberhart, R. 1998. A modified particle swarm optimizer. In 1998 IEEE international conference on evolutionary computation proceedings. IEEE world congress on computational intelligence (Cat. No. 98TH8360), 69-73.
Farosi, K., Nuryani, N., & Darmanto, D. 2017. Optimasi Fuzzy Inference System pada Sistem Deteksi Fibrilasi Atrium dengan Fitur Elektrokardiogram. Jurnal Fisika Dan Aplikasinya, 13(1), 10-13.
Anzihory, E., Nuryani, N., & Darmanto, D. 2016. Sistem Deteksi Fibrilasi Atrium menggunakan Fitur RR Elektokardiogram dengan Jaringan Syaraf Tiruan. Jurnal Fisika dan Aplikasinya, 12(2), 57-60.
Maftukhaturrizqoh, O., Nuryani, N., & Darmanto, D. 2019. Drowsiness detection using radial basis function network with electrocardiographic RR interval statistical feature. In Journal of Physics: Conference Series, 1153(1), 012049
Refbacks
- There are currently no refbacks.